Tracking individuals in surveillance video of a high-density crowd

被引:1
|
作者
Hu, Ninghang [1 ,2 ]
Bouma, Henri [1 ]
Worring, Marcel [2 ]
机构
[1] TNO, POB 96864, NL-2509 JG The Hague, Netherlands
[2] Univ Amsterdam, NL-1098 GH Amsterdam, Netherlands
来源
VISUAL INFORMATION PROCESSING XXI | 2012年 / 8399卷
关键词
Security; tracking; surveillance; image processing; crowd;
D O I
10.1117/12.918604
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Video cameras are widely used for monitoring public areas, such as train stations, airports and shopping centers. When crowds are dense, automatically tracking individuals becomes a challenging task. We propose a new tracker which employs a particle filter tracking framework, where the state transition model is estimated by an optical-flow algorithm. In this way, the state transition model directly uses the motion dynamics across the scene, which is better than the traditional way of a pre-defined dynamic model. Our result shows that the proposed tracker performs better on different tracking challenges compared with the state-of-the-art trackers, while also improving on the quality of the result.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] FaceEngine: A Tracking-Based Framework for Real-Time Face Recognition in Video Surveillance System
    Imran A.
    Ahmed R.
    Hasan M.M.
    Ahmed M.H.U.
    Azad A.K.M.
    Alyami S.A.
    SN Computer Science, 5 (5)
  • [32] Multi-day neuron tracking in high-density electrophysiology recordings using earth mover's distance
    Yuan, Augustine Xiaoran
    Colonell, Jennifer
    Lebedeva, Anna
    Okun, Michael
    Charles, Adam S.
    Harris, Timothy D.
    ELIFE, 2024, 12
  • [33] Track Reconstruction in a High-Density Environment with ALICE
    Arslandok, Mesut
    Hellbaer, Ernst
    Ivanov, Marian
    Muenzer, Robert Helmut
    Wiechula, Jens
    PARTICLES, 2022, 5 (01) : 84 - 95
  • [34] Multiple Hypothesis Detection and Tracking Using Deep Learning for Video Traffic Surveillance
    Ait Abdelali, Hamd
    Derrouz, Hatim
    Zennayi, Yahya
    Haj Thami, Rachid Oulad
    Bourzeix, Francois
    IEEE ACCESS, 2021, 9 : 164282 - 164291
  • [35] Privacy enabled video surveillance using a two state Markov tracking algorithm
    Peng Zhang
    Tony Thomas
    Sabu Emmanuel
    Multimedia Systems, 2012, 18 : 175 - 199
  • [36] Privacy enabled video surveillance using a two state Markov tracking algorithm
    Zhang, Peng
    Thomas, Tony
    Emmanuel, Sabu
    MULTIMEDIA SYSTEMS, 2012, 18 (02) : 175 - 199
  • [37] Pedestrian Tracking Algorithm for Video Surveillance Based on Lightweight Convolutional Neural Network
    Wei, Honglei
    Zhai, Xianyi
    Wu, Hongda
    IEEE ACCESS, 2024, 12 : 24831 - 24842
  • [38] Conception and Development of a Video Surveillance System for Detecting, Tracking and Profile Analysis of a Person
    Ezzahout, Abderrahmane
    Oulad Haj Thami, Rachid
    2013 3RD INTERNATIONAL SYMPOSIUM ISKO-MAGHREB, 2013,
  • [39] ENHANCED MOVING OBJECT DETECTION USING TRACKING SYSTEM FOR VIDEO SURVEILLANCE PURPOSES
    Beaugendre, Axel
    Zhang, Chenyuan
    Xu, Jiu
    Goto, Satoshi
    2012 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2012,
  • [40] SPECTRUM-BASED OBJECT DETECTION AND TRACKING TECHNIQUE FOR DIGITAL VIDEO SURVEILLANCE
    Vishnyakov, Boris
    Vizilter, Yury
    Knyaz, Vladimir
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 579 - 583