A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data

被引:19
|
作者
Wang, Zhensheng [1 ,2 ,3 ,4 ,5 ,6 ]
Yue, Yang [3 ,4 ,5 ,6 ]
He, Biao [3 ,4 ,5 ,6 ,7 ]
Nie, Ke [2 ]
Tu, Wei [3 ,4 ,5 ,6 ]
Du, Qingyun [8 ]
Li, Qingquan [1 ,3 ,4 ,5 ,6 ]
机构
[1] Shenzhen Univ, Guangdong Prov Lab Artificial Intelligence & Digi, Shenzhen, Peoples R China
[2] Minist Nat Resources, Key Lab Urban Land Resources Monitoring & Simulat, Shenzhen, Peoples R China
[3] Shenzhen Univ, Guangdong Key Lab Urban Informat, Shenzhen, Peoples R China
[4] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen, Peoples R China
[5] Shenzhen Univ, MNR Key Lab Geoenvironm Monitoring Great Bay Area, Shenzhen, Peoples R China
[6] Shenzhen Univ, Res Inst Smart Cities, Shenzhen, Peoples R China
[7] Shenzhen Univ, MNR, Technol Innovat Ctr Terr & Spatial Big Data, Shenzhen, Peoples R China
[8] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian hierarchical models; population fluctuation; space-time interactions; spatial autocorrelation; mobile phone data; TIME VARIATION; LOCATION DATA; DISEASE; BEHAVIOR; HARBIN; RISK;
D O I
10.1080/13658816.2020.1798967
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding population distribution has excellent applications for planning and provision of municipal services. This study aims to explore the space-time structure of population distribution with area-level mobile phone data. We discuss a kind of Bayesian hierarchical models, fitted by Markov chain Monte Carlo simulation, that combines the overall spatial pattern and temporal trends as well as the departures from these stable components. We carry out an empirical study in Shenzhen, China, using the area-level mobile phone users in 24 hours. The results indicate that the estimation of the overall spatial pattern is not deteriorated when using a sophisticated spatio-temporal model. The temporal trend exhibits a reasonable fluctuation during the study period. Then we apply two rules to detect areas showing unstable trends of population fluctuation based on the posterior probabilities of the space-time interactions. We also include the population statistics and indices for mixed-use to explore the spatial pattern of population fluctuation. Our findings confirm that the Bayesian spatio-temporal model can enhance the understanding of the space-time variability of population distribution using mobile phone data. Further research should examine the spatial nonstationary effects of explanatory factors on mobile phone-based population fluctuation.
引用
收藏
页码:116 / 134
页数:19
相关论文
共 50 条
  • [41] A New Spatio-Temporal Model for Data Rate Distributions in Mobile Networks
    Gast, Florian
    Doerpinghaus, Meik
    Roth, Florian
    Fettweis, Gerhard P.
    27TH INTERNATIONAL WORKSHOP ON SMART ANTENNAS, WSA 2024, 2024, : 103 - 108
  • [42] Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age
    Gao, Song
    SPATIAL COGNITION AND COMPUTATION, 2015, 15 (02) : 86 - 114
  • [43] Investigating the spatio-temporal variation of hepatitis A in Korea using a Bayesian model
    Jeong, Jaehong
    Kim, Mijeong
    Choi, Jungsoon
    FRONTIERS IN PUBLIC HEALTH, 2023, 10
  • [44] A Dynamic Model for Urban Population Density Estimation Using Mobile Phone Location Data
    Dan, YuFang
    He, Zhongshi
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 3, 2010, : 277 - 281
  • [45] Spatio-temporal Analysis of Mobile Phone and Social Media Data Across Multiple Disaster Scenarios: An Input to Population Exposure Assessment
    Detera, Bernadette Joy M
    Kanno, Takashi
    Onda, Kaya
    Tsubouchi, Kota
    Kodaka, Akira
    Nishino, Akihiko
    Kohtake, Naohiko
    ACM International Conference Proceeding Series, 2023, : 1 - 8
  • [46] Effects of ambient population with different income levels on the spatio-temporal pattern of theft: A study based on mobile phone big data
    Song, Guangwen
    Cai, Liang
    Liu, Lin
    Xiao, Luzi
    Wu, Yuhan
    Yue, Han
    CITIES, 2023, 137
  • [47] Spatio-temporal exposure risk estimation for COVID-19 using social network analysis and mobile phone data
    Cumbane, Silvino Pedro
    Gidofalvi, Gyozo
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2025,
  • [48] Bayesian multivariate spatio-temporal model for quasi-sparse count data
    Kang, Hyunju
    Lee, Kyoungjae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2025, 38 (01)
  • [49] Analyzing pace-of-play in soccer using spatio-temporal event data
    Shen, Ethan
    Santo, Shawn
    Akande, Olanrewaju
    JOURNAL OF SPORTS ANALYTICS, 2022, 8 (02) : 127 - 139