A Bayesian spatio-temporal model to analyzing the stability of patterns of population distribution in an urban space using mobile phone data

被引:19
|
作者
Wang, Zhensheng [1 ,2 ,3 ,4 ,5 ,6 ]
Yue, Yang [3 ,4 ,5 ,6 ]
He, Biao [3 ,4 ,5 ,6 ,7 ]
Nie, Ke [2 ]
Tu, Wei [3 ,4 ,5 ,6 ]
Du, Qingyun [8 ]
Li, Qingquan [1 ,3 ,4 ,5 ,6 ]
机构
[1] Shenzhen Univ, Guangdong Prov Lab Artificial Intelligence & Digi, Shenzhen, Peoples R China
[2] Minist Nat Resources, Key Lab Urban Land Resources Monitoring & Simulat, Shenzhen, Peoples R China
[3] Shenzhen Univ, Guangdong Key Lab Urban Informat, Shenzhen, Peoples R China
[4] Shenzhen Univ, Shenzhen Key Lab Spatial Smart Sensing & Serv, Shenzhen, Peoples R China
[5] Shenzhen Univ, MNR Key Lab Geoenvironm Monitoring Great Bay Area, Shenzhen, Peoples R China
[6] Shenzhen Univ, Res Inst Smart Cities, Shenzhen, Peoples R China
[7] Shenzhen Univ, MNR, Technol Innovat Ctr Terr & Spatial Big Data, Shenzhen, Peoples R China
[8] Wuhan Univ, Sch Resource & Environm Sci, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian hierarchical models; population fluctuation; space-time interactions; spatial autocorrelation; mobile phone data; TIME VARIATION; LOCATION DATA; DISEASE; BEHAVIOR; HARBIN; RISK;
D O I
10.1080/13658816.2020.1798967
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Understanding population distribution has excellent applications for planning and provision of municipal services. This study aims to explore the space-time structure of population distribution with area-level mobile phone data. We discuss a kind of Bayesian hierarchical models, fitted by Markov chain Monte Carlo simulation, that combines the overall spatial pattern and temporal trends as well as the departures from these stable components. We carry out an empirical study in Shenzhen, China, using the area-level mobile phone users in 24 hours. The results indicate that the estimation of the overall spatial pattern is not deteriorated when using a sophisticated spatio-temporal model. The temporal trend exhibits a reasonable fluctuation during the study period. Then we apply two rules to detect areas showing unstable trends of population fluctuation based on the posterior probabilities of the space-time interactions. We also include the population statistics and indices for mixed-use to explore the spatial pattern of population fluctuation. Our findings confirm that the Bayesian spatio-temporal model can enhance the understanding of the space-time variability of population distribution using mobile phone data. Further research should examine the spatial nonstationary effects of explanatory factors on mobile phone-based population fluctuation.
引用
收藏
页码:116 / 134
页数:19
相关论文
共 50 条
  • [31] A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage
    Andrienko, Gennady
    Andrienko, Natalia
    Bak, Peter
    Bremm, Sebastian
    Keim, Daniel
    von Landesberger, Tatiana
    Poelitz, Christian
    Schreck, Tobias
    JOURNAL OF LOCATION BASED SERVICES, 2010, 4 (3-4) : 200 - 221
  • [32] Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model
    Sabyasachi Mukhopadhyay
    Joseph O. Ogutu
    Gundula Bartzke
    Holly T. Dublin
    Hans-Peter Piepho
    Journal of Agricultural, Biological and Environmental Statistics, 2019, 24 : 369 - 393
  • [33] Analyzing Local Spatio-Temporal Patterns of Police Calls-for-Service Using Bayesian Integrated Nested Laplace Approximation
    Luan, Hui
    Quick, Matthew
    Law, Jane
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2016, 5 (09)
  • [34] Discussion of “Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan”
    Anestis Antoniadis
    Jean-Michel Poggi
    Statistical Methods & Applications, 2015, 24 : 307 - 312
  • [35] Modelling Spatio-Temporal Variation in Sparse Rainfall Data Using a Hierarchical Bayesian Regression Model
    Mukhopadhyay, Sabyasachi
    Ogutu, Joseph O.
    Bartzke, Gundula
    Dublin, Holly T.
    Piepho, Hans-Peter
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (02) : 369 - 393
  • [36] Accurate Map Matching Method for Mobile Phone Signaling Data Under Spatio-Temporal Uncertainty
    Huang, Yulang
    Wang, Dianhai
    Xu, Wang
    Cai, Zhengyi
    Fu, Fengjie
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (02) : 1418 - 1429
  • [37] Discussion of "Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan"
    Antoniadis, Anestis
    Poggi, Jean-Michel
    STATISTICAL METHODS AND APPLICATIONS, 2015, 24 (02): : 307 - 312
  • [38] Identifying spatio-temporal seizure propagation patterns in epilepsy using Bayesian inference
    Vattikonda, Anirudh N.
    Hashemi, Meysam
    Sip, Viktor
    Woodman, Marmaduke M.
    Bartolomei, Fabrice
    Jirsa, Viktor K.
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [39] Identifying spatio-temporal seizure propagation patterns in epilepsy using Bayesian inference
    Anirudh N. Vattikonda
    Meysam Hashemi
    Viktor Sip
    Marmaduke M. Woodman
    Fabrice Bartolomei
    Viktor K. Jirsa
    Communications Biology, 4
  • [40] Stability of traveling waves in a population dynamics model with spatio-temporal delay
    Yang, Yun-Rui
    Liu, Li
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 : 183 - 195