Classification of Infection and Ischemia in Diabetic Foot Ulcers Using VGG Architectures

被引:6
作者
Gueley, Orhun [1 ,4 ]
Pati, Sarthak [1 ,2 ,3 ,4 ]
Bakas, Spyridon [1 ,2 ,3 ]
机构
[1] Univ Penn, Ctr Biomed Image Comp & Analyt CBICA, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Radiol, Perelman Sch Med, Philadelphia, PA 19104 USA
[4] Tech Univ Munich, Dept Informat, Munich, Germany
来源
DIABETIC FOOT ULCERS GRAND CHALLENGE (DFUC 2021) | 2022年 / 13183卷
基金
美国国家卫生研究院;
关键词
Diabetic foot; Classification; Deep learning; Convolutional neural network; DFUC2021; DFU; Ischemia; VGG; GaNDLF; PATTERN-ANALYSIS; DEEP; GLIOBLASTOMA; INFILTRATION; SELECTION; QUALITY; LIFE;
D O I
10.1007/978-3-030-94907-5_6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diabetic foot ulceration (DFU) is a serious complication of diabetes, and a major challenge for healthcare systems around the world. Further infection and ischemia in DFU can significantly prolong treatment and often result in limb amputation, with more severe cases resulting in terminal illness. Thus, early identification and regular monitoring is necessary to improve care, and reduce the burden on healthcare systems. With that in mind, this study attempts to address the problem of infection and ischemia classification in diabetic food ulcers, in four distinct classes. We have evaluated a series of VGG architectures with different layers, following numerous training strategies, including k-fold cross validation, data pre-processing options, augmentation techniques, and weighted loss calculations. In favor of transparency and reproducibility, we make all the implementations available through the Generally Nuanced Deep Learning Framework (GaNDLF, github.com/CBICA/GaNDLF. Our best model was evaluated during the DFU Challenge 2021, and was ranked 2nd, 5th, and 7th based on the macro-averaged AUC (area under the curve), macro-averaged F1 score, and macro-averaged recall metrics, respectively. Our findings support that current state-of-the-art architectures provide good results for the DFU image classification task, and further experimentation is required to study the effects of pre-processing and augmentation strategies.
引用
收藏
页码:76 / 89
页数:14
相关论文
共 59 条
[1]  
Agarap A. F., 2018, CoRR
[2]  
Akbari H., 2015, SURVIVAL PREDICTION
[3]  
Akbari H., 2018, 56 ANN M AM SOC NEUR
[4]   Histopathology-validated machine learning radiographic biomarker for noninvasive discrimination between true progression and pseudo-progression in glioblastoma [J].
Akbari, Hamed ;
Rathore, Saima ;
Bakas, Spyridon ;
Nasrallah, MacLean P. ;
Shukla, Gaurav ;
Mamourian, Elizabeth ;
Rozycki, Martin ;
Bagley, Stephen J. ;
Rudie, Jeffrey D. ;
Flanders, Adam E. ;
Dicker, Adam P. ;
Desai, Arati S. ;
O'Rourke, Donald M. ;
Brem, Steven ;
Lustig, Robert ;
Mohan, Suyash ;
Wolf, Ronald L. ;
Bilello, Michel ;
Martinez-Lage, Maria ;
Davatzikos, Christos .
CANCER, 2020, 126 (11) :2625-2636
[5]   Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Bilello, Michel ;
Wolf, Ronald L. ;
Martinez-Lage, Maria ;
Biros, George ;
Alonso-Basanta, Michelle ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEUROSURGERY, 2016, 78 (04) :572-580
[6]   Pattern Analysis of Dynamic Susceptibility Contrast-enhanced MR Imaging Demonstrates Peritumoral Tissue Heterogeneity [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Wolf, Ronald L. ;
Bilello, Michel ;
Verma, Ragini ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
RADIOLOGY, 2014, 273 (02) :502-510
[7]   RELATIONSHIP BETWEEN VARIABLE SELECTION AND DATA AUGMENTATION AND A METHOD FOR PREDICTION [J].
ALLEN, DM .
TECHNOMETRICS, 1974, 16 (01) :125-127
[8]   DFU_QUTNet: diabetic foot ulcer classification using novel deep convolutional neural network [J].
Alzubaidi, Laith ;
Fadhel, Mohammed A. ;
Oleiwi, Sameer R. ;
Al-Shamma, Omran ;
Zhang, Jinglan .
MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) :15655-15677
[9]  
[Anonymous], 2015, 3 INT C LEARN REPR I
[10]  
Bakas S., 2018, ARXIV PREPRINT ARXIV