Learning robust pulses for generating universal quantum gates

被引:39
作者
Dong, Daoyi [1 ]
Wu, Chengzhi [2 ]
Chen, Chunlin [2 ]
Qi, Bo [3 ,4 ]
Petersen, Ian R. [1 ]
Nori, Franco [5 ,6 ]
机构
[1] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[2] Nanjing Univ, Dept Control & Syst Engn, Nanjing 210093, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, ISS, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Natl Ctr Math & Interdisciplinary Sci, Beijing 100190, Peoples R China
[5] RIKEN, CEMS, Wako, Saitama 3510198, Japan
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
SUPERCONDUCTING CIRCUITS;
D O I
10.1038/srep36090
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constructing a set of universal quantum gates is a fundamental task for quantum computation. The existence of noises, disturbances and fluctuations is unavoidable during the process of implementing quantum gates for most practical quantum systems. This paper employs a sampling-based learning method to find robust control pulses for generating a set of universal quantum gates. Numerical results show that the learned robust control fields are insensitive to disturbances, uncertainties and fluctuations during the process of realizing universal quantum gates.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Speed limits for quantum gates in multiqubit systems [J].
Ashhab, S. ;
de Groot, P. C. ;
Nori, Franco .
PHYSICAL REVIEW A, 2012, 85 (05)
[2]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[3]   Robust trapped-ion quantum logic gates by continuous dynamical decoupling [J].
Bermudez, A. ;
Schmidt, P. O. ;
Plenio, M. B. ;
Retzker, A. .
PHYSICAL REVIEW A, 2012, 85 (04)
[4]   Fast Tunable Coupler for Superconducting Qubits [J].
Bialczak, R. C. ;
Ansmann, M. ;
Hofheinz, M. ;
Lenander, M. ;
Lucero, E. ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Wang, H. ;
Weides, M. ;
Wenner, J. ;
Yamamoto, T. ;
Cleland, A. N. ;
Martinis, J. M. .
PHYSICAL REVIEW LETTERS, 2011, 106 (06)
[5]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12
[6]   Natural and artificial atoms for quantum computation [J].
Buluta, Iulia ;
Ashhab, Sahel ;
Nori, Franco .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (10)
[7]  
Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/NPHYS1994, 10.1038/nphys1994]
[8]   Characterizing universal gate sets via dihedral benchmarking [J].
Carignan-Dugas, Arnaud ;
Wallman, Joel J. ;
Emerson, Joseph .
PHYSICAL REVIEW A, 2015, 92 (06)
[9]   Sampling-based learning control of inhomogeneous quantum ensembles [J].
Chen, Chunlin ;
Dong, Daoyi ;
Long, Ruixing ;
Petersen, Ian R. ;
Rabitz, Herschel A. .
PHYSICAL REVIEW A, 2014, 89 (02)
[10]   Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit [J].
Chen, Zijun ;
Kelly, Julian ;
Quintana, Chris ;
Barends, R. ;
Campbell, B. ;
Chen, Yu ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. G. ;
Lucero, E. ;
Jeffrey, E. ;
Megrant, A. ;
Mutus, J. ;
Neeley, M. ;
Neill, C. ;
O'Malley, P. J. J. ;
Roushan, P. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Korotkov, A. N. ;
Martinis, John M. .
PHYSICAL REVIEW LETTERS, 2016, 116 (02)