Data-driven discovery of reduced plasma physics models from fully kinetic simulations

被引:35
|
作者
Alves, E. P. [1 ,2 ]
Fiuza, F. [1 ]
机构
[1] SLAC Natl Accelerator Lab, High Energy Dens Sci Div, Menlo Pk, CA 94025 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 03期
基金
美国国家科学基金会;
关键词
MAGNETIC-FIELD AMPLIFICATION; DIFFUSIVE SHOCK ACCELERATION; PARTICLE-ACCELERATION; ASTROPHYSICAL SHOCKS; INSTABILITY; OSCILLATIONS; GENERATION; EQUATIONS;
D O I
10.1103/PhysRevResearch.4.033192
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
At the core of some of the most important problems in plasma physics-from controlled nuclear fusion to the acceleration of cosmic rays-is the challenge to describe nonlinear, multiscale plasma dynamics. The development of reduced plasma models that balance between accuracy and complexity is critical to advancing theoretical comprehension and enabling holistic computational descriptions of these problems. Here we report the data-driven discovery of accurate reduced plasma models, in the form of partial differential equations, directly from first-principles particle-in-cell simulations. We achieve this by using an integral formulation of sparsity-based model-discovery techniques and show that this is crucial to robustly identify the governing equations in the presence of discrete particle noise. We demonstrate the potential of this approach by recovering the fundamental hierarchy of plasma physics models-from the Vlasov equation to magnetohydrodynamics. Our findings show that this data-driven methodology offers a promising route to accelerate the development of reduced theoretical models of complex nonlinear plasma phenomena and to design computationally efficient algorithms for multiscale plasma simulations.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Reduced Simulations for High-Energy Physics, a Middle Ground for Data-Driven Physics Research
    Odyurt, Uraz
    Swatman, Stephen Nicholas
    Varbanescu, Ana-Lucia
    Caron, Sascha
    COMPUTATIONAL SCIENCE, ICCS 2024, PT II, 2024, 14833 : 84 - 99
  • [2] Data-Driven Discovery of Closure Models
    Pan, Shaowu
    Duraisamy, Karthik
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (04): : 2381 - 2413
  • [3] Concatenating data-driven and reduced-physics models for smart production forecasting
    Ogali, Oscar Ikechukwu Okoronkwo
    Orodu, Oyinkepreye David
    EARTH SCIENCE INFORMATICS, 2025, 18 (02)
  • [4] Physics-based Or Data-driven Models?
    Mason, Richard
    Hart's E and P, 2019, (April):
  • [5] Data-driven acceleration of multi-physics simulations
    Meinecke, Stefan
    Selig, Malte
    Koester, Felix
    Knorr, Andreas
    Luedge, Kathy
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (04):
  • [6] Data-driven aerodynamic models for aeroelastic simulations
    Lelkes, Janos
    Horvath, David Andras
    Lendvai, Balint
    Farkas, Balazs
    Bak, Bendeguz Dezso
    Kalmar-Nagy, Tamas
    JOURNAL OF SOUND AND VIBRATION, 2023, 564
  • [7] Data-Driven Discovery of Mechanical Models Directly From MRI Spectral Data
    Heesterbeek, David G. J.
    van Riel, Max H. C.
    van Leeuwen, Tristan
    Berg, Cornelis A. T. van den
    Sbrizzi, Alessandro
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 1640 - 1649
  • [8] AUTOMATED DATA-DRIVEN PHYSICS DISCOVERY OF TURBINE COMPONENT DAMAGE
    Zhang, Sheng
    Jacobs, Ryan
    Ghosh, Sayan
    Kulkarni, Ambarish
    Wang, Liping
    PROCEEDINGS OF ASME TURBO EXPO 2022: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2022, VOL 8B, 2022,
  • [9] Unsupervised discovery of nonlinear plasma physics using differentiable kinetic simulations
    Joglekar, Archis S. S.
    Thomas, Alexander G. R.
    JOURNAL OF PLASMA PHYSICS, 2022, 88 (06)
  • [10] Application of physics-constrained data-driven reduced-order models to shape optimization
    Karbasian, Hamid R.
    Vermeire, Brian C.
    JOURNAL OF FLUID MECHANICS, 2022, 934