Synthesis and characterization of ordered, very large pore MSU-H silicas assembled from water-soluble silicates

被引:143
作者
Kim, SS
Karkamkar, A
Pinnavaia, TJ [1 ]
Kruk, M
Jaroniec, M
机构
[1] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[2] Michigan State Univ, Ctr Fundamental Mat Res, E Lansing, MI 48824 USA
关键词
D O I
10.1021/jp010773p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional, hexagonally ordered silicas with large uniform mesopores (7.6-11.9 nm) have been assembled through a nonionic supramolecular assembly pathway using sodium silicate as a silica source and the triblock copolymer Pluronic P123 (EO20PO70EO20) as a structure-directing agent. An increase in the synthesis temperature from 308 to 333 K in a one-step procedure led to a systematic increase in the unit-cell size, pore diameter, specific surface area, and pore volume, and to a decrease in the pore wall thickness. The resulting materials exhibited adsorption properties highly similar to those of SBA-15 silica assembled through an electrostatic pathway under strongly acidic conditions, indicating that the framework structure of MSU-H is analogous to that of SBA-15 and consists of ordered large pores connected by micropores in the pore walls. When the one-step synthesis procedure was followed by a post-assembly hydrothermal treatment at 373 K, the resultant MSU-H silicas exhibited framework pores enlarged by 1.7-2.8 mn and substantially increased secondary (textural) porosity, a feature that is not characteristic of SBA-15. These results demonstrated a wide range of possibilities in tailoring the structures of silicas synthesized using low-cost and convenient reagents. In addition, gas adsorption data for the MSU-H silicas allowed us to examine the accuracy of a recently proposed procedure for calculation of the pore size distributions, calibrated using MCM-41 silicas and extrapolated over larger pore sizes. It was found that this procedure overestimates pore diameters for MSU-H silicas, which might be related to the inaccuracy of the aforementioned extrapolation, or to deviations of the MSU-H pore shape from uniform cylindrical pores with the length much larger than the pore diameter.
引用
收藏
页码:7663 / 7670
页数:8
相关论文
共 52 条
[11]   Optically, defined multifunctional patterning of photosensitive thin-film silica mesophases [J].
Doshi, DA ;
Huesing, NK ;
Lu, MC ;
Fan, HY ;
Lu, YF ;
Simmons-Potter, K ;
Potter, BG ;
Hurd, AJ ;
Brinker, CJ .
SCIENCE, 2000, 290 (5489) :107-111
[12]   Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15 [J].
Han, YJ ;
Kim, JM ;
Stucky, GD .
CHEMISTRY OF MATERIALS, 2000, 12 (08) :2068-2069
[13]   Mesoporous silicate sequestration and release of proteins [J].
Han, YJ ;
Stucky, GD ;
Butler, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (42) :9897-9898
[14]   Ag nanowire formation within mesoporous silica [J].
Huang, MH ;
Choudrey, A ;
Yang, PD .
CHEMICAL COMMUNICATIONS, 2000, (12) :1063-1064
[15]   Fabrication of a novel polypyrrole/poly(methyl methacrylate) coaxial nanocable using mesoporous silica as a nanoreactor [J].
Jang, JS ;
Lim, B ;
Lee, J ;
Hyeon, T .
CHEMICAL COMMUNICATIONS, 2001, (01) :83-84
[16]   Standard nitrogen adsorption data for characterization of nanoporous silicas [J].
Jaroniec, M ;
Kruk, M ;
Olivier, JP .
LANGMUIR, 1999, 15 (16) :5410-5413
[17]   Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J].
Jun, S ;
Joo, SH ;
Ryoo, R ;
Kruk, M ;
Jaroniec, M ;
Liu, Z ;
Ohsuna, T ;
Terasaki, O .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (43) :10712-10713
[18]   Synthesis of porous palladium superlattice nanoballs and nanowires [J].
Kang, H ;
Jun, Y ;
Park, JI ;
Lee, KB ;
Cheon, J .
CHEMISTRY OF MATERIALS, 2000, 12 (12) :3530-+
[19]   One-step synthesis of ordered mesocomposites with non-ionic amphiphilic block copolymers: implications of isoelectric point, hydrolysis rate and fluoride [J].
Kim, JM ;
Han, YJ ;
Chmelka, BF ;
Stucky, GD .
CHEMICAL COMMUNICATIONS, 2000, (24) :2437-2438
[20]   Synthesis of highly ordered mesoporous silica materials using sodium silicate and amphiphilic block copolymers [J].
Kim, JM ;
Stucky, GD .
CHEMICAL COMMUNICATIONS, 2000, (13) :1159-1160