State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation

被引:35
|
作者
Zenkour, A. M. [1 ,2 ]
Abouelregal, A. E. [3 ]
Alnefaie, K. A. [4 ]
Abu-Hamdeh, N. H. [4 ]
Aljinaidi, A. A. [4 ]
Aifantis, E. C. [4 ,5 ,6 ,7 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Kafrelsheikh Univ, Dept Math, Fac Sci, Kafr Al Sheikh 33516, Egypt
[3] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
[4] King Abdulaziz Univ, Dept Mech Engn, Jeddah 21589, Saudi Arabia
[5] Aristotle Univ Thessaloniki, Lab Mech & Mat, Polytech Sch, GR-54124 Thessaloniki, Greece
[6] Michigan Technol Univ, Coll Engn, Houghton, MI 49931 USA
[7] ITMO Univ, Int Lab Modern Funct Mat, St Petersburg 197101, Russia
关键词
Euler-Bernoulli nanobeam; Green-Naghdi heat equation; Nonlocal thermoelasticity; Ramp-type heating; THERMALLY-INDUCED VIBRATIONS; GENERALIZED THERMOELASTICITY; GRADIENT ELASTICITY; DYNAMICS;
D O I
10.1007/s12206-015-0623-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this article, an Euler-Bernoulli beam model based upon nonlocal thermoelasticity theory without energy dissipation is used to study the vibration of a nanobeam subjected to ramp-type heating. Classical continuum theory is inherently size independent, while nonlocal elasticity exhibits size dependence. Among other things, this leads to a new expression for the effective nonlocal bending moment as contrasted to its classical counterpart. The thermal problem is addressed in the context of the Green-Naghdi (GN) theory of heat transport without energy dissipation. The governing partial differential equations are solved in the Laplace transform domain by the state space approach of modern control theory. Inverse of Laplace transforms are computed numerically using Fourier expansion techniques. The effects of nonlocality and ramping time parameters on the lateral vibration, temperature, displacement and bending moment are discussed.
引用
收藏
页码:2921 / 2931
页数:11
相关论文
共 50 条
  • [1] State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation
    A. M. Zenkour
    A. E. Abouelregal
    K. A. Alnefaie
    N. H. Abu-Hamdeh
    A. A. Aljinaidi
    E. C. Aifantis
    Journal of Mechanical Science and Technology, 2015, 29 : 2921 - 2931
  • [2] On the theory of thermoelasticity without energy dissipation
    Iesan, D
    JOURNAL OF THERMAL STRESSES, 1998, 21 (3-4) : 295 - 307
  • [3] A Symplectic Approach for Free Vibration of Nanobeams Based on Nonlocal Elasticity Theory
    Yang, C. Y.
    Tong, Z. Z.
    Ni, Y. W.
    Zhou, Z. H.
    Xu, X. S.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2017, 5 (05): : 441 - 450
  • [4] A theory of micropolar thermoelasticity without energy dissipation
    Ciarletta, M
    JOURNAL OF THERMAL STRESSES, 1999, 22 (06) : 581 - 594
  • [5] ON THE THEORY OF MICROPOLAR THERMOELASTICITY WITHOUT ENERGY DISSIPATION
    Passarella, Francesca
    Zampoli, Vittorio
    JOURNAL OF THERMAL STRESSES, 2010, 33 (04) : 305 - 317
  • [6] A refined nonlocal thermoelasticity theory for the vibration of nanobeams induced by ramp-type heating
    Zenkour, A. M.
    Abouelregal, A. E.
    Alnefaie, K. A.
    Abu-Hamdeh, N. H.
    Aifantis, E. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 169 - 183
  • [7] Nonlocal elasticity theory for transverse vibration of composite nanobeams based on wave approach
    Wei, Liu
    Wang, Xiandong
    ARCHIVE OF APPLIED MECHANICS, 2025, 95 (04)
  • [8] Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory
    Ke, Liao-Liang
    Wang, Yue-Sheng
    Wang, Zheng-Dao
    COMPOSITE STRUCTURES, 2012, 94 (06) : 2038 - 2047
  • [9] A uniqueness theorem in the theory of thermoelasticity without energy dissipation
    Chandrasekharaiah, DS
    JOURNAL OF THERMAL STRESSES, 1996, 19 (03) : 267 - 272
  • [10] On a theory of thermoelasticity without energy dissipation for solids with microtemperatures
    Iesan, D.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (06): : 870 - 885