Combined deep learning and molecular docking simulations approach identifies potentially effective FDA approved drugs for repurposing against SARS-CoV-2

被引:19
作者
Anwaar, Muhammad U. [1 ]
Adnan, Farjad [2 ]
Abro, Asma [3 ]
Khan, Rayyan A. [1 ]
Rehman, Asad U. [4 ,5 ]
Osama, Muhammad [4 ,5 ]
Rainville, Christopher [6 ]
Kumar, Suresh [6 ]
Sterner, David E. [6 ]
Javed, Saad [4 ,5 ]
Jamal, Syed B. [7 ]
Baig, Ahmadullah [4 ]
Shabbir, Muhammad R. [4 ,5 ]
Ahsan, Waseh [4 ]
Butt, Tauseef R. [6 ]
Assir, Muhammad Z. [4 ,5 ,8 ]
机构
[1] Tech Univ Munich, Dept Elect & Comp Engn, Arcisstr 21, D-80333 Munich, Germany
[2] Paderborn Univ, Warburger Str 100, D-33098 Paderborn, Germany
[3] Balochistan Univ Informat Technol, Fac Life Sci & Informat, Dept Biotechnol Engn & Management Sci, Dept Biotechnol, Quetta 1800, Pakistan
[4] Univ Hlth Sci, Allama Iqbal Med Coll, Dept Med, Lahore 54550, Pakistan
[5] Ctr Undiagnosed Rare & Emerging Dis, Lahore 54550, Pakistan
[6] Progenra Inc, 271A Great Valley Pkwy, Malvern, PA 19355 USA
[7] Natl Univ Med Sci, Dept Biol Sci, Rawalpindi, Pakistan
[8] Shaheed Zulfiqar Ali Bhutto Med Univ, Dept Mol Biol, Islamabad 44000, Pakistan
关键词
SARS-CoV-2; Drug repurposing; Machine learning; Docking; Binding affinity; RECOGNITION; ASPERGILLOSIS; INFECTION; PARADIGM; SINGLE;
D O I
10.1016/j.compbiomed.2021.105049
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ongoing pandemic of Coronavirus Disease 2019 (COVID-19) has posed a serious threat to global public health. Drug repurposing is a time-efficient approach to finding effective drugs against SARS-CoV-2 in this emergency. Here, we present a robust experimental design combining deep learning with molecular docking experiments to identify the most promising candidates from the list of FDA-approved drugs that can be repurposed to treat COVID-19. We have employed a deep learning-based Drug Target Interaction (DTI) model, called DeepDTA, with few improvements to predict drug-protein binding affinities, represented as KIBA scores, for 2440 FDA-approved and 8168 investigational drugs against 24 SARS-CoV-2 viral proteins. FDA-approved drugs with the highest KIBA scores were selected for molecular docking simulations. We ran around 50,000 docking simulations for 168 selected drugs against 285 total predicted and/or experimentally proven active sites of all 24 SARS-CoV-2 viral proteins. A list of 49 most promising FDA-approved drugs with the best consensus KIBA scores and binding affinity values against selected SARS-CoV-2 viral proteins was generated. Most importantly, 16 drugs including anidulafungin, velpatasvir, glecaprevir, rifapentine, flavin adenine dinucleotide (FAD), terlipressin, and selinexor demonstrated the highest predicted inhibitory potential against key SARS-CoV-2 viral proteins. We further measured the inhibitory activity of 5 compounds (rifapentine, velpatasvir, glecaprevir, anidulafungin, and FAD disodium) on SARS-CoV-2 PLpro using Ubiquitin-Rhodamine 110 Gly fluorescent intensity assay. The highest inhibition of PLpro activity was seen with rifapentine (IC50: 15.18 mu M) and FAD disodium (IC50: 12.39 mu M), the drugs with high predicted KIBA scores and binding affinities.
引用
收藏
页数:15
相关论文
共 59 条
[1]   Invasive pulmonary aspergillosis in patients with influenza infection: report of two cases and systematic review of the literature [J].
Alshabani, Khaled ;
Haq, Athar ;
Miyakawa, Ryo ;
Palla, Mohan ;
Soubani, Ayman O. .
EXPERT REVIEW OF RESPIRATORY MEDICINE, 2015, 9 (01) :89-96
[2]  
[Anonymous], 2017, Atomic convolutional networks for predicting protein-ligand binding affinity
[3]   COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow [J].
Bikdeli, Behnood ;
Madhavan, Mahesh V. ;
Jimenez, David ;
Chuich, Taylor ;
Dreyfus, Isaac ;
Driggin, Elissa ;
Der Nigoghossian, Caroline ;
Ageno, Walter ;
Madjid, Mohammad ;
Guo, Yutao ;
Tang, Liang V. ;
Hu, Yu ;
Giri, Jay ;
Cushman, Mary ;
Quere, Isabelle ;
Dimakakos, Evangelos P. ;
Gibson, C. Michael ;
Lippi, Giuseppe ;
Favaloro, Emmanuel J. ;
Fareed, Jawed ;
Caprini, Joseph A. ;
Tafur, Alfonso J. ;
Burton, John R. ;
Francese, Dominic P. ;
Wang, Elizabeth Y. ;
Falanga, Anna ;
McLintock, Claire ;
Hunt, Beverley J. ;
Spyropoulos, Alex C. ;
Barnes, Geoffrey D. ;
Eikelboom, John W. ;
Weinberg, Ido ;
Schulman, Sam ;
Carrier, Marc ;
Piazza, Gregory ;
Beckman, Joshua A. ;
Steg, Gabriel ;
Stone, Gregg W. ;
Rosenkranz, Stephan ;
Goldhaber, Samuel Z. ;
Parikh, Sahil A. ;
Monreal, Manuel ;
Krumholz, Harlan M. ;
Konstantinides, Stavros V. ;
Weitz, Jeffrey I. ;
Lip, Gregory Y. H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (23) :2950-2973
[4]   Molecular recognition and docking algorithms [J].
Brooijmans, N ;
Kuntz, ID .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2003, 32 :335-373
[5]   RETHINKING SHAPE SPACE - EVIDENCE FROM SIMULATED DOCKING SUGGESTS THAT STERIC SHAPE COMPLEMENTARITY IS NOT LIMITING FOR ANTIBODY-ANTIGEN RECOGNITION AND IDIOTYPIC INTERACTIONS [J].
CARNEIRO, J ;
STEWART, J .
JOURNAL OF THEORETICAL BIOLOGY, 1994, 169 (04) :391-402
[6]   Oral Selinexor-Dexamethasone for Triple-Class Refractory Multiple Myeloma [J].
Chari, Ajai ;
Vogl, Dan T. ;
Gavriatopoulou, Maria ;
Nooka, Ajay K. ;
Yee, Andrew J. ;
Huff, Carol A. ;
Moreau, Philippe ;
Dingli, David ;
Cole, Craig ;
Lonial, Sagar ;
Dimopoulos, Meletios ;
Stewart, A. Keith ;
Richter, Joshua ;
Vij, Ravi ;
Tuchman, Sascha ;
Raab, Marc S. ;
Weisel, Katja C. ;
Delforge, Michel ;
Cornell, Robert F. ;
Kaminetzky, David ;
Hoffman, James E. ;
Costa, Luciano J. ;
Parker, Terri L. ;
Levy, Moshe ;
Schreder, Martin ;
Meuleman, Nathalie ;
Frenzel, Laurent ;
Mohty, Mohamad ;
Choquet, Sylvain ;
Schiller, Gary ;
Comenzo, Raymond L. ;
Engelhardt, Monika ;
Illmer, Thomas ;
Vlummens, Philip ;
Doyen, Chantal ;
Facon, Thierry ;
Karlin, Lionel ;
Perrot, Aurore ;
Podar, Klaus ;
Kauffman, Michael G. ;
Shacham, Sharon ;
Li, Lingling ;
Tang, Shijie ;
Picklesimer, Carla ;
Saint-Martin, Jean-Richard ;
Crochiere, Marsha ;
Chang, Hua ;
Parekh, Samir ;
Landesman, Yosef ;
Shah, Jatin .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (08) :727-738
[7]  
Chen Y.W., 2020, PREDICTION SARS COV, P9
[8]   ChemDraw Ultra 9.0. [J].
Cousins, KR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (11) :4115-4116
[9]   Comprehensive analysis of kinase inhibitor selectivity [J].
Davis, Mindy I. ;
Hunt, Jeremy P. ;
Herrgard, Sanna ;
Ciceri, Pietro ;
Wodicka, Lisa M. ;
Pallares, Gabriel ;
Hocker, Michael ;
Treiber, Daniel K. ;
Zarrinkar, Patrick P. .
NATURE BIOTECHNOLOGY, 2011, 29 (11) :1046-U124
[10]   Innovation in the pharmaceutical industry: New estimates of R&D costs [J].
DiMasi, Joseph A. ;
Grabowski, Henry G. ;
Hansen, Ronald W. .
JOURNAL OF HEALTH ECONOMICS, 2016, 47 :20-33