Combined deep learning and molecular docking simulations approach identifies potentially effective FDA approved drugs for repurposing against SARS-CoV-2

被引:18
作者
Anwaar, Muhammad U. [1 ]
Adnan, Farjad [2 ]
Abro, Asma [3 ]
Khan, Rayyan A. [1 ]
Rehman, Asad U. [4 ,5 ]
Osama, Muhammad [4 ,5 ]
Rainville, Christopher [6 ]
Kumar, Suresh [6 ]
Sterner, David E. [6 ]
Javed, Saad [4 ,5 ]
Jamal, Syed B. [7 ]
Baig, Ahmadullah [4 ]
Shabbir, Muhammad R. [4 ,5 ]
Ahsan, Waseh [4 ]
Butt, Tauseef R. [6 ]
Assir, Muhammad Z. [4 ,5 ,8 ]
机构
[1] Tech Univ Munich, Dept Elect & Comp Engn, Arcisstr 21, D-80333 Munich, Germany
[2] Paderborn Univ, Warburger Str 100, D-33098 Paderborn, Germany
[3] Balochistan Univ Informat Technol, Fac Life Sci & Informat, Dept Biotechnol Engn & Management Sci, Dept Biotechnol, Quetta 1800, Pakistan
[4] Univ Hlth Sci, Allama Iqbal Med Coll, Dept Med, Lahore 54550, Pakistan
[5] Ctr Undiagnosed Rare & Emerging Dis, Lahore 54550, Pakistan
[6] Progenra Inc, 271A Great Valley Pkwy, Malvern, PA 19355 USA
[7] Natl Univ Med Sci, Dept Biol Sci, Rawalpindi, Pakistan
[8] Shaheed Zulfiqar Ali Bhutto Med Univ, Dept Mol Biol, Islamabad 44000, Pakistan
关键词
SARS-CoV-2; Drug repurposing; Machine learning; Docking; Binding affinity; RECOGNITION; ASPERGILLOSIS; INFECTION; PARADIGM; SINGLE;
D O I
10.1016/j.compbiomed.2021.105049
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ongoing pandemic of Coronavirus Disease 2019 (COVID-19) has posed a serious threat to global public health. Drug repurposing is a time-efficient approach to finding effective drugs against SARS-CoV-2 in this emergency. Here, we present a robust experimental design combining deep learning with molecular docking experiments to identify the most promising candidates from the list of FDA-approved drugs that can be repurposed to treat COVID-19. We have employed a deep learning-based Drug Target Interaction (DTI) model, called DeepDTA, with few improvements to predict drug-protein binding affinities, represented as KIBA scores, for 2440 FDA-approved and 8168 investigational drugs against 24 SARS-CoV-2 viral proteins. FDA-approved drugs with the highest KIBA scores were selected for molecular docking simulations. We ran around 50,000 docking simulations for 168 selected drugs against 285 total predicted and/or experimentally proven active sites of all 24 SARS-CoV-2 viral proteins. A list of 49 most promising FDA-approved drugs with the best consensus KIBA scores and binding affinity values against selected SARS-CoV-2 viral proteins was generated. Most importantly, 16 drugs including anidulafungin, velpatasvir, glecaprevir, rifapentine, flavin adenine dinucleotide (FAD), terlipressin, and selinexor demonstrated the highest predicted inhibitory potential against key SARS-CoV-2 viral proteins. We further measured the inhibitory activity of 5 compounds (rifapentine, velpatasvir, glecaprevir, anidulafungin, and FAD disodium) on SARS-CoV-2 PLpro using Ubiquitin-Rhodamine 110 Gly fluorescent intensity assay. The highest inhibition of PLpro activity was seen with rifapentine (IC50: 15.18 mu M) and FAD disodium (IC50: 12.39 mu M), the drugs with high predicted KIBA scores and binding affinities.
引用
收藏
页数:15
相关论文
共 59 条
  • [1] Invasive pulmonary aspergillosis in patients with influenza infection: report of two cases and systematic review of the literature
    Alshabani, Khaled
    Haq, Athar
    Miyakawa, Ryo
    Palla, Mohan
    Soubani, Ayman O.
    [J]. EXPERT REVIEW OF RESPIRATORY MEDICINE, 2015, 9 (01) : 89 - 96
  • [2] COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow
    Bikdeli, Behnood
    Madhavan, Mahesh V.
    Jimenez, David
    Chuich, Taylor
    Dreyfus, Isaac
    Driggin, Elissa
    Der Nigoghossian, Caroline
    Ageno, Walter
    Madjid, Mohammad
    Guo, Yutao
    Tang, Liang V.
    Hu, Yu
    Giri, Jay
    Cushman, Mary
    Quere, Isabelle
    Dimakakos, Evangelos P.
    Gibson, C. Michael
    Lippi, Giuseppe
    Favaloro, Emmanuel J.
    Fareed, Jawed
    Caprini, Joseph A.
    Tafur, Alfonso J.
    Burton, John R.
    Francese, Dominic P.
    Wang, Elizabeth Y.
    Falanga, Anna
    McLintock, Claire
    Hunt, Beverley J.
    Spyropoulos, Alex C.
    Barnes, Geoffrey D.
    Eikelboom, John W.
    Weinberg, Ido
    Schulman, Sam
    Carrier, Marc
    Piazza, Gregory
    Beckman, Joshua A.
    Steg, Gabriel
    Stone, Gregg W.
    Rosenkranz, Stephan
    Goldhaber, Samuel Z.
    Parikh, Sahil A.
    Monreal, Manuel
    Krumholz, Harlan M.
    Konstantinides, Stavros V.
    Weitz, Jeffrey I.
    Lip, Gregory Y. H.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (23) : 2950 - 2973
  • [3] Molecular recognition and docking algorithms
    Brooijmans, N
    Kuntz, ID
    [J]. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2003, 32 : 335 - 373
  • [4] RETHINKING SHAPE SPACE - EVIDENCE FROM SIMULATED DOCKING SUGGESTS THAT STERIC SHAPE COMPLEMENTARITY IS NOT LIMITING FOR ANTIBODY-ANTIGEN RECOGNITION AND IDIOTYPIC INTERACTIONS
    CARNEIRO, J
    STEWART, J
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 1994, 169 (04) : 391 - 402
  • [5] Oral Selinexor-Dexamethasone for Triple-Class Refractory Multiple Myeloma
    Chari, Ajai
    Vogl, Dan T.
    Gavriatopoulou, Maria
    Nooka, Ajay K.
    Yee, Andrew J.
    Huff, Carol A.
    Moreau, Philippe
    Dingli, David
    Cole, Craig
    Lonial, Sagar
    Dimopoulos, Meletios
    Stewart, A. Keith
    Richter, Joshua
    Vij, Ravi
    Tuchman, Sascha
    Raab, Marc S.
    Weisel, Katja C.
    Delforge, Michel
    Cornell, Robert F.
    Kaminetzky, David
    Hoffman, James E.
    Costa, Luciano J.
    Parker, Terri L.
    Levy, Moshe
    Schreder, Martin
    Meuleman, Nathalie
    Frenzel, Laurent
    Mohty, Mohamad
    Choquet, Sylvain
    Schiller, Gary
    Comenzo, Raymond L.
    Engelhardt, Monika
    Illmer, Thomas
    Vlummens, Philip
    Doyen, Chantal
    Facon, Thierry
    Karlin, Lionel
    Perrot, Aurore
    Podar, Klaus
    Kauffman, Michael G.
    Shacham, Sharon
    Li, Lingling
    Tang, Shijie
    Picklesimer, Carla
    Saint-Martin, Jean-Richard
    Crochiere, Marsha
    Chang, Hua
    Parekh, Samir
    Landesman, Yosef
    Shah, Jatin
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (08) : 727 - 738
  • [6] Chen Y.W., 2020, PREDICTION SARS COV, P9
  • [7] ChemDraw Ultra 9.0.
    Cousins, KR
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (11) : 4115 - 4116
  • [8] Comprehensive analysis of kinase inhibitor selectivity
    Davis, Mindy I.
    Hunt, Jeremy P.
    Herrgard, Sanna
    Ciceri, Pietro
    Wodicka, Lisa M.
    Pallares, Gabriel
    Hocker, Michael
    Treiber, Daniel K.
    Zarrinkar, Patrick P.
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (11) : 1046 - U124
  • [9] Innovation in the pharmaceutical industry: New estimates of R&D costs
    DiMasi, Joseph A.
    Grabowski, Henry G.
    Hansen, Ronald W.
    [J]. JOURNAL OF HEALTH ECONOMICS, 2016, 47 : 20 - 33
  • [10] Glecaprevir plus pibrentasvir for chronic hepatitis C virus genotype 1, 2, 4, 5, or 6 infection in adults with compensated cirrhosis (EXPEDITION-1): a single-arm, open-label, multicentre phase 3 trial
    Forns, Xavier
    Lee, Samuel S.
    Valdes, Joaquin
    Lens, Sabela
    Ghalib, Reem
    Aguilar, Humberto
    Felizarta, Franco
    Hassanein, Tarek
    Hinrichsen, Holger
    Rincon, Diego
    Morillas, Rosa
    Zeuzem, Stefan
    Horsmans, Yves
    Nelson, David R.
    Yu, Yao
    Krishnan, Preethi
    Lin, Chih-Wei
    Kort, Jens J.
    Mensa, Federico J.
    [J]. LANCET INFECTIOUS DISEASES, 2017, 17 (10) : 1062 - 1068