Calculating contracted tensor Feynman integrals

被引:10
|
作者
Fleischer, J. [2 ]
Riemann, T. [1 ]
机构
[1] DESY, D-15738 Zeuthen, Germany
[2] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany
关键词
NLO computations; QCD; QED; Feynman integrals; REDUCTION;
D O I
10.1016/j.physletb.2011.06.033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A recently derived approach to the tensor reduction of 5-point one-loop Feynman integrals expresses the tensor coefficients by scalar 1-point to 4-point Feynman integrals completely algebraically. In this Letter we derive extremely compact algebraic expressions for the contractions of the tensor integrals with external momenta. This is based on sums over signed minors weighted with scalar products of the external momenta. With these contractions one can construct the invariant amplitudes of the matrix elements under consideration, and the evaluation of one-loop contributions to massless and massive multi-particle production at high energy colliders like LHC and ILC is expected to be performed very efficiently. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:646 / 653
页数:8
相关论文
共 50 条
  • [1] A recursive reduction of tensor Feynman integrals
    Diakonidis, Th.
    Fleischer, J.
    Riemann, T.
    Tausk, J. B.
    PHYSICS LETTERS B, 2010, 683 (01) : 69 - 74
  • [2] FaRe: A Mathematica package for tensor reduction of Feynman integrals
    Fiorentin, Michele Re
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (03):
  • [3] Effective Quantum Field Theory Methods for Calculating Feynman Integrals
    Kotikov, Anatoly V.
    SYMMETRY-BASEL, 2024, 16 (01):
  • [4] Feynman integrals as A-hypergeometric functions
    de la Cruz, Leonardo
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [5] Massive Feynman integrals and electroweak corrections
    Gluza, Janusz
    Riemann, Tord
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2015, 261 : 140 - 154
  • [6] Feynman integrals and motives
    Marcolli, Matilde
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 293 - 332
  • [7] Determining arbitrary Feynman integrals by vacuum integrals
    Liu, Xiao
    Ma, Yan-Qing
    PHYSICAL REVIEW D, 2019, 99 (07)
  • [8] Functional reduction of Feynman integrals
    Tarasov, O. V.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (02)
  • [9] Gauss relations in Feynman integrals
    Feng, Tai-Fu
    Zhou, Yang
    Zhang, Hai-Bin
    PHYSICAL REVIEW D, 2025, 111 (01)
  • [10] Functional reduction of Feynman integrals
    O. V. Tarasov
    Journal of High Energy Physics, 2019