ON A DISTRIBUTED CONTROL PROBLEM FOR A COUPLED CHEMOTAXIS-FLUID MODEL

被引:14
|
作者
Angeles Rodriguez-Bellido, M. [1 ,2 ]
Rueda-Gomez, Diego A. [3 ]
Villamizar-Roa, Elder J. [3 ]
机构
[1] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Seville, IMUS, C Tarfia S-N, E-41012 Seville, Spain
[3] Univ Ind Santander, Escuela Matemat, Bucaramanga 678, Colombia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2018年 / 23卷 / 02期
关键词
Chemotaxis; Navier-Stokes equations; Patlak-Keller-Segel model; distributed control; KELLER-SEGEL SYSTEM; STATIONARY SOLUTIONS; GLOBAL EXISTENCE; CONTROLLABILITY RESULT; BOUNDARY CONTROL; STEADY-STATES; DIFFUSION; ANGIOGENESIS; PATTERNS; FLOW;
D O I
10.3934/dcdsb.2017208
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze an optimal distributed control problem where the state equations are given by a stationary chemotaxis model coupled with the Navier-Stokes equations. We consider that the movement and the interaction of cells are occurring in a smooth bounded domain of R-n; n = 2; 3; subject to homogeneous boundary conditions. We control the system through a distributed force and a coefficient of chemotactic sensitivity, leading the chemical concentration, the cell density, and the velocity field towards a given target concentration, density and velocity, respectively. In addition to the existence of optimal solution, we derive some optimality conditions.
引用
收藏
页码:557 / 571
页数:15
相关论文
共 50 条
  • [31] A MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN METHOD WITH BEAM-WARMING SCHEME FOR A COUPLED CHEMOTAXIS-FLUID MODEL
    Qiao, Zhonghua
    Yang, Xuguang
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (03): : 1207 - 1225
  • [32] ENHANCED DISSIPATION AND BLOW-UP SUPPRESSION IN A CHEMOTAXIS-FLUID SYSTEM
    He, Siming
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) : 2615 - 2643
  • [33] GENERALIZED SOLVABILITY IN A CHEMOTAXIS-FLUID SYSTEM WITH NONLINEAR DIFFUSION AND LOGISTIC SOURCE
    Ding, Mengyao
    Hao, Xiaonan
    Zhang, Chao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, : 3055 - 3083
  • [34] A regularity condition and temporal asymptotics for chemotaxis-fluid equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    Lee, Ki-Ahm
    NONLINEARITY, 2018, 31 (02) : 351 - 387
  • [35] Global Solvability to a 3D Chemotaxis-Fluid Model with Matrix-Valued Supercritical Sensitivities
    Xu, Wei
    Sun, Tao
    ACTA APPLICANDAE MATHEMATICAE, 2021, 173 (01)
  • [36] Global Solvability to a 3D Chemotaxis-Fluid Model with Matrix-Valued Supercritical Sensitivities
    Wei Xu
    Tao Sun
    Acta Applicandae Mathematicae, 2021, 173
  • [37] Random perturbations for the chemotaxis-fluid model with fractional dissipation: Global pathwise weak solutions
    Zhang, Lei
    Liu, Bin
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [38] Small-data solutions of chemotaxis-fluid system with indirect signal production
    Liu, Xi
    Zhang, Yichen
    Han, Yongjie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (02)
  • [39] Global classical solutions for chemotaxis-fluid systems in two dimensions
    Ahn, Jaewook
    Kang, Kyungkeun
    Yoon, Changwook
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 2254 - 2264
  • [40] Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system
    Tao, Youshan
    Winkler, Michael
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2555 - 2573