Adaptive Bivariate Function Generation based on Chebyshev-Polynomials

被引:0
|
作者
Rust, Jochen [1 ]
Seidel, Pascal [1 ]
Paul, Steffen [1 ]
机构
[1] Univ Bremen, Inst Electrodynam & Microelect ITEMme, Bremen, Germany
来源
2019 17TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS) | 2019年
关键词
function generator; numeric function approximation; Chebyshev-Polynomials;
D O I
10.1109/newcas44328.2019.8961270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper an adaptive hardware architecture for high-performance bivariate numerical function approximation is presented. Orthogonal Chebyshev-Polynomials are exploited that cover incremental accuracy refinements. Additionally, switching between two numeric functions is easily deployable by changing the set of polynomial coefficients. For evaluation, different configurations of the proposed hardware function generator are implemented and analyzed considering three bivariate numeric functions. The resulting performance highlights this approach to be a powerful extension for bivariate function approximation.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Modal analysis of dielectric optical waveguides based on Chebyshev polynomials
    Huang, CC
    Huang, CC
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 45 (04) : 328 - 331
  • [12] Security of public-key cryptosystems based on Chebyshev polynomials
    Bergamo, P
    D'Arco, P
    De Santis, A
    Kocarev, L
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2005, 52 (07) : 1382 - 1393
  • [13] A new robust line search technique based on Chebyshev polynomials
    Elgindy, K. T.
    Hedar, Abdel-Rahman
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 206 (02) : 853 - 866
  • [14] Provably secure public key cryptosystem based on chebyshev polynomials
    Yan, Shijie
    Zhen, Ping
    Min, Lequan
    Journal of Communications, 2015, 10 (06): : 380 - 384
  • [15] An approximate solution of bivariate nonlinear Fredholm integral equations using hybrid block-pulse functions with Chebyshev polynomials
    Mohammadi, M.
    Zakeri, A.
    Karami, M.
    MATHEMATICAL SCIENCES, 2021, 15 (01) : 1 - 9
  • [16] An approximate solution of bivariate nonlinear Fredholm integral equations using hybrid block-pulse functions with Chebyshev polynomials
    M. Mohammadi
    A. Zakeri
    M. Karami
    Mathematical Sciences, 2021, 15 : 1 - 9
  • [17] Identities and relations for Hermite-based Milne–Thomson polynomials associated with Fibonacci and Chebyshev polynomials
    Neslihan Kilar
    Yilmaz Simsek
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [18] A Novel Public-key Cryptosystem Based on Extended Chebyshev Polynomials
    Wang, Dahu
    Dong, Aihua
    Yang, Haizhu
    Yu, Fashan
    Wang, Xudong
    SEVENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS I-III: UNLOCKING THE FULL POTENTIAL OF GLOBAL TECHNOLOGY, 2008, : 684 - 688
  • [19] Spectral method for solving the equal width equation based on Chebyshev polynomials
    Ali, A. H. A.
    NONLINEAR DYNAMICS, 2008, 51 (1-2) : 59 - 70
  • [20] An Improved Public Key Cryptographic Algorithm Based on Chebyshev Polynomials and RSA
    Zhang, Chunfu
    Liang, Yanchun
    Tavares, Adriano
    Wang, Lidong
    Gomes, Tiago
    Pinto, Sandro
    SYMMETRY-BASEL, 2024, 16 (03):