Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics

被引:118
|
作者
Baunsgaard, Carsten Bach [1 ]
Nissen, Ulla Vig [1 ]
Brust, Anne Katrin [2 ]
Frotzler, Angela [2 ]
Ribeill, Cornelia [3 ]
Kalke, Yorck-Bernhard [3 ]
Leon, Natacha [4 ]
Gomez, Belen [4 ]
Samuelsson, Kersti [5 ,6 ]
Antepohl, Wolfram [5 ,6 ]
Holmstrom, Ulrika [7 ]
Marklund, Niklas [7 ]
Glott, Thomas [8 ]
Opheim, Arve [8 ,9 ]
Benito, Jesus [10 ]
Murillo, Narda [10 ]
Nachtegaal, Janneke [11 ]
Faber, Willemijn [11 ]
Biering-Sorensen, Fin [1 ]
机构
[1] Univ Copenhagen, Rigshosp, Clin Spinal Cord Injuries, Copenhagen, Denmark
[2] SPC, Nottwil, Switzerland
[3] Ulm Univ, SCI Ctr, Orthopaed Dept, Ulm, Germany
[4] FLM, Madrid, Spain
[5] Linkoping Univ, Dept Rehabil Med, Linkoping, Sweden
[6] Linkoping Univ, Dept Med & Hlth Sci, Linkoping, Sweden
[7] Uppsala Univ Hosp, Spinal Cord Rehabil Unit, Uppsala, Sweden
[8] Sunnaas Rehabil Hosp, Nesoddtangen, Norway
[9] Univ Gothenburg, Sahlgrenska Acad, Inst Neurosci & Physiol, Rehabil Med, Gothenburg, Sweden
[10] Neurorehabil Hosp, Inst Guttmann, Barcelona, Spain
[11] Heliomare Rehabil Ctr, Wijk Aan Zee, Netherlands
基金
英国医学研究理事会;
关键词
OUTCOME MEASURES; INCOMPLETE TETRAPLEGIA; PERCEIVED EXERTION; AMBULATION; RECOVERY; VALIDITY; MOTOR; RELIABILITY; WALKING; REHABILITATION;
D O I
10.1038/s41393-017-0013-7
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Study design Prospective quasi-experimental study, pre-and post-design. Objectives Assess safety, feasibility, training characteristics and changes in gait function for persons with spinal cord injury (SCI) using the robotic exoskeletons from Ekso Bionics. Setting Nine European rehabilitation centres. Methods Robotic exoskeleton gait training, three times weekly over 8 weeks. Time upright, time walking and steps in the device (training characteristics) were recorded longitudinally. Gait and neurological function were measured by 10 Metre Walk Test (10 MWT), Timed Up and Go (TUG), Berg Balance Scale (BBS), Walking Index for Spinal Cord Injury (WISCI) II and Lower Extremity Motor Score (LEMS). Results Fifty-two participants completed the training protocol. Median age: 35.8 years (IQR 27.5-52.5), men/women: N = 36/16, neurological level of injury: C1-L2 and severity: AIS A-D (American Spinal Injury Association Impairment Scale). Time since injury (TSI) < 1 year, N = 25; > 1 year, N = 27. No serious adverse events occurred. Three participants dropped out following ankle swelling (overuse injury). Four participants sustained a Category II pressure ulcer at contact points with the device but completed the study and skin normalized. Training characteristics increased significantly for all subgroups. The number of participants with TSI < 1 year and gait function increased from 20 to 56% (P=0.004) and 10MWT, TUG, BBS and LEMS results improved (P < 0.05). The number of participants with TSI > 1 year and gait function, increased from 41 to 44% and TUG and BBS results improved (P < 0.05). Conclusions Exoskeleton training was generally safe and feasible in a heterogeneous sample of persons with SCI. Results indicate potential benefits on gait function and balance.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 50 条
  • [41] Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study
    Raithatha, Ravi
    Carrico, Cheryl
    Powell, Elizabeth Salmon
    Westgate, Philip M.
    Chelette, Kenneth C., II
    Lee, Kara
    Dunsmore, Laura
    Salles, Sara
    Sawaki, Lumy
    NEUROREHABILITATION, 2016, 38 (01) : 15 - 25
  • [42] Impact of Robotic-Assisted Gait Training in Subacute Spinal Cord Injury Patients on Outcome Measure
    Tarnacka, Beata
    Korczynski, Bogumil
    Frasunska, Justyna
    DIAGNOSTICS, 2023, 13 (11)
  • [43] Gait training regimen for incomplete spinal cord injury using functional electrical stimulation
    Thrasher, T. A.
    Flett, H. M.
    Popovic, M. R.
    SPINAL CORD, 2006, 44 (06) : 357 - 361
  • [44] Gait training regimen for incomplete spinal cord injury using functional electrical stimulation
    T A Thrasher
    H M Flett
    M R Popovic
    Spinal Cord, 2006, 44 : 357 - 361
  • [45] Overground gait training promotes functional recovery and cortical neuroplasticity in an incomplete spinal cord injury model
    Ilha, Jocemar
    Meireles, Anamaria
    de Freitas, Gabriel Ribeiro
    do Espirito Santo, Caroline C.
    Machado-Pereira, Nicolas A. M. M.
    Swarowsky, Alessandra
    Soares Santos, Adair Roberto
    LIFE SCIENCES, 2019, 232
  • [46] Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat® gait training
    Kumru, Hatice
    Murillo, Narda
    Benito-Penalva, Jesus
    Tormos, Jose M.
    Vidal, Joan
    NEUROSCIENCE LETTERS, 2016, 620 : 143 - 147
  • [47] Effects on the Motor Function, Proprioception, Balance, and Gait Ability of the End-Effector Robot-Assisted Gait Training for Spinal Cord Injury Patients
    Shin, Ji Cheol
    Jeon, Ha Ra
    Kim, Dahn
    Cho, Sung Il
    Min, Won Kyu
    Lee, June Sung
    Oh, Da Som
    Yoo, Jeehyun
    BRAIN SCIENCES, 2021, 11 (10)
  • [48] Strength training versus robot-assisted gait training after incomplete spinal cord injury: a randomized pilot study in patients depending on walking assistance
    Rob Labruyère
    Hubertus J A van Hedel
    Journal of NeuroEngineering and Rehabilitation, 11
  • [49] Ambulation and physical function after eccentric resistance training in adults with incomplete spinal cord injury: A feasibility study
    Stone, Whitley J.
    Stevens, Sandra L.
    Fuller, Dana K.
    Caputo, Jennifer L.
    JOURNAL OF SPINAL CORD MEDICINE, 2019, 42 (04) : 526 - 533
  • [50] Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study
    del-Ama, Antonio J.
    Gil-Agudo, Angel
    Pons, Jose L.
    Moreno, Juan C.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8