Intelligible and Explainable Machine Learning: Best Practices and Practical Challenges

被引:20
作者
Caruana, Rich [1 ]
Lundberg, Scott [1 ]
Ribeiro, Marco Tulio [1 ]
Nori, Harsha [2 ]
Jenkins, Samuel [2 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Microsoft Corp, Redmond, WA 98052 USA
来源
KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING | 2020年
关键词
interpretability; intelligibility; responsible AI;
D O I
10.1145/3394486.3406707
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
引用
收藏
页码:3511 / 3512
页数:2
相关论文
empty
未找到相关数据