CFNet: A Cross Fusion Network for Joint Land Cover Classification Using Optical and SAR Images

被引:44
作者
Kang, Wenchao [1 ,2 ,3 ]
Xiang, Yuming [1 ,2 ,3 ]
Wang, Feng [1 ,2 ]
You, Hongjian [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Applic, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 101408, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical sensors; Optical imaging; Radar polarimetry; Feature extraction; Adaptive optics; Convolution; Optical scattering; Fully convolutional network (FCN); joint land cover classification; optical remote sensing image; synthetic aperture radar (SAR); URBAN IMPERVIOUS SURFACE;
D O I
10.1109/JSTARS.2022.3144587
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As two of the most widely used remote sensing images, optical and synthetic aperture radar (SAR) images show abundant and complementary information on the same target owing to their individual imaging mechanisms. Consequently, using optical and SAR images simultaneously can better describe the inherent features of the target, and thus, be beneficial for subsequent remote sensing applications. In this article, we propose a novel modular fully convolutional network model to improve the accuracy of land cover classification by fully exploiting the complementary features of the two sensors. We investigate where and how to fuse the two images in the joint classification network. A cross-gate module with a bidirectional information flow is proposed to achieve the best fusion performance. In addition, to validate the proposed model, we construct a multiclass land cover classification dataset. Exhaustive experiments show that the proposed joint classification network presents superior results than state-of-the-art classification models using single-sensor images.
引用
收藏
页码:1562 / 1574
页数:13
相关论文
共 36 条
[1]   Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine [J].
Adrian, Jarrett ;
Sagan, Vasit ;
Maimaitijiang, Maitiniyazi .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 :215-235
[2]   Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks [J].
Audebert, Nicolas ;
Le Saux, Bertrand ;
Lefevre, Sebastien .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 140 :20-32
[3]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[4]   MP-ResNet: Multipath Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images [J].
Ding, Lei ;
Zheng, Kai ;
Lin, Dong ;
Chen, Yuxing ;
Liu, Bing ;
Li, Jiansheng ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[5]   Land Cover Classification From VHR Optical Remote Sensing Images by Feature Ensemble Deep Learning Network [J].
Dong, Shan ;
Zhuang, Yin ;
Yang, Zhanxin ;
Pang, Long ;
Chen, He ;
Long, Teng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) :1396-1400
[6]   Spectral Superresolution of Multispectral Imagery With Joint Sparse and Low-Rank Learning [J].
Gao, Lianru ;
Hong, Danfeng ;
Yao, Jing ;
Zhang, Bing ;
Gamba, Paolo ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03) :2269-2280
[7]  
Gbodjo J. E., IEEE J SEL TOPICS AP, V14, P2021
[8]   Multimodal remote sensing benchmark datasets for land cover classification with a shared and specific feature learning model [J].
Hong, Danfeng ;
Hu, Jingliang ;
Yao, Jing ;
Chanussot, Jocelyn ;
Zhu, Xiao Xiang .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 :68-80
[9]   More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification [J].
Hong, Danfeng ;
Gao, Lianru ;
Yokoya, Naoto ;
Yao, Jing ;
Chanussot, Jocelyn ;
Du, Qian ;
Zhang, Bing .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05) :4340-4354
[10]   An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing [J].
Hong, Danfeng ;
Yokoya, Naoto ;
Chanussot, Jocelyn ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) :1923-1938