Sufficient Conditions for Closed-Loop Control Over Multiple-Access and Broadcast Channels

被引:9
作者
Zaidi, Ali A. [1 ]
Oechtering, Tobias J. [1 ]
Skoglund, Mikael [1 ]
机构
[1] Royal Inst Technol KTH, Sch Elect Engn, Stockholm, Sweden
来源
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC) | 2010年
关键词
STABILIZATION; CAPACITY; SYSTEMS; SHANNON;
D O I
10.1109/CDC.2010.5717279
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of closed-loop stabilization of two scalar linear time invariant systems over noisy multiple-access and broadcast communication channels with arbitrarily distributed initial states is addressed. We propose to use communication and control schemes based on the coding schemes introduced by Ozarow et al. for the multiple-access and the broadcast channels with noiseless feedback which are extensions of the Schalkwijk-Kailath coding scheme. By employing the proposed communication and control schemes over the multiple-access and the broadcast channels, we derive stability regions those are sufficient for mean square stability of the two linearly controlled LTI systems.
引用
收藏
页码:4771 / 4776
页数:6
相关论文
共 20 条
[1]  
[Anonymous], 2006, Elements of Information Theory
[2]   SIMULTANEOUS DESIGN OF MEASUREMENT AND CONTROL STRATEGIES FOR STOCHASTIC-SYSTEMS WITH FEEDBACK [J].
BANSAL, R ;
BASAR, T .
AUTOMATICA, 1989, 25 (05) :679-694
[3]   When Bode meets Shannon: Control-oriented feedback communication schemes [J].
Elia, N .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (09) :1477-1488
[4]  
Freudenberg J., 2006, P ACC
[5]   Stabilization and Disturbance Attenuation Over a Gaussian Communication Channel [J].
Freudenberg, James S. ;
Middleton, Richard H. ;
Solo, Victor .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (03) :795-799
[6]  
Hayes M. H., 1996, Statistical digital signal processing and modeling
[7]   An analogue of Shannon information theory for detection and stabilization via noisy discrete communication channels [J].
Matveev, Alexey S. ;
Savkin, Andrey V. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (04) :1323-1367
[8]   Feedback Stabilization Over a First Order Moving Average Gaussian Noise Channel [J].
Middleton, Richard H. ;
Rojas, Alejandro J. ;
Freudenberg, James S. ;
Braslavsky, Julio H. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (01) :163-167
[9]  
Nair G. N., 2002, P IEEE CDC
[10]   Stabilizability of stochastic linear systems with finite feedback data rates [J].
Nair, GN ;
Evans, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :413-436