μ(z)-homeomorphisms in the plane

被引:1
作者
Chen, ZG [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310028, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:547 / 556
页数:10
相关论文
共 23 条
[1]  
Ahlfors L. V., 1966, LECT QUASICONFORMAL
[2]   Mappings of BMO-bounded distortion [J].
Astala, K ;
Iwaniec, T ;
Koskela, P ;
Martin, G .
MATHEMATISCHE ANNALEN, 2000, 317 (04) :703-726
[3]   On solutions of the Beltrami equation [J].
Brakalova, MA ;
Jenkins, JA .
JOURNAL D ANALYSE MATHEMATIQUE, 1998, 76 (1) :67-92
[4]  
Chen JX, 1996, MICH MATH J, V43, P211
[5]  
Chen Z, 2001, ISRAEL J MATH, V122, P347
[6]   SOLUTIONS OF THE BELTRAMI EQUATION WITH THE NORM OF MU TO INFINITY = 1 [J].
DAVID, G .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (01) :25-70
[7]  
GARDINER F.P., 1987, PURE APPL MATH NEW Y
[8]  
Gehring FW, 1999, ANN ACAD SCI FENN-M, V24, P253
[9]  
HE CQ, 1965, ACTA MATH SINICA, V15, P487
[10]   Mappings of finite distortion: Monotonicity and continuity [J].
Iwaniec, T ;
Koskela, P ;
Onninen, J .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :507-531