From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions

被引:26
作者
Cantwell, C. D. [1 ]
Sherwin, S. J. [2 ]
Kirby, R. M. [3 ]
Kelly, P. H. J. [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[3] Univ Utah, Sch Comp, Salt Lake City, UT USA
[4] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
spectral/hp element; optimisation; code performance; FINITE-ELEMENTS; EQUATIONS; FLOW;
D O I
10.1051/mmnp/20116304
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is a growing interest in high-order finite and spectral/hp element methods using continuous and discontinuous Galerkin formulations. In this paper we investigate the effect of h- and p-type refinement on the relationship between runtime performance and solution accuracy. The broad spectrum of possible domain discretisations makes establishing a performance-optimal selection non-trivial. Through comparing the runtime of different implementations for evaluating operators over the space of discretisations with a desired solution tolerance, we demonstrate how the optimal discretisation and operator implementation may be selected for a specified problem. Furthermore, this demonstrates the need for codes to support both low- and high-order discretisations.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 16 条
[12]   Tetrahedral hp finite elements: Algorithms and flow simulations [J].
Sherwin, SJ ;
Karniadakis, GE .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (01) :14-45
[13]   Hierarchical hp finite elements in hybrid domains [J].
Sherwin, SJ .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 27 (01) :109-119
[14]  
Smith B., 2004, DOMAIN DECOMPOSITION
[15]   From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations [J].
Vos, Peter E. J. ;
Sherwin, Spencer J. ;
Kirby, Robert M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (13) :5161-5181
[16]  
Zienkiewicz OC, 2005, FINITE ELEMENT METHOD FOR FLUID DYNAMICS, 6TH EDITION, P1