From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions

被引:26
作者
Cantwell, C. D. [1 ]
Sherwin, S. J. [2 ]
Kirby, R. M. [3 ]
Kelly, P. H. J. [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2AZ, England
[3] Univ Utah, Sch Comp, Salt Lake City, UT USA
[4] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
spectral/hp element; optimisation; code performance; FINITE-ELEMENTS; EQUATIONS; FLOW;
D O I
10.1051/mmnp/20116304
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is a growing interest in high-order finite and spectral/hp element methods using continuous and discontinuous Galerkin formulations. In this paper we investigate the effect of h- and p-type refinement on the relationship between runtime performance and solution accuracy. The broad spectrum of possible domain discretisations makes establishing a performance-optimal selection non-trivial. Through comparing the runtime of different implementations for evaluating operators over the space of discretisations with a desired solution tolerance, we demonstrate how the optimal discretisation and operator implementation may be selected for a specified problem. Furthermore, this demonstrates the need for codes to support both low- and high-order discretisations.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 16 条
[1]   High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow water equations [J].
Bernard, P-E. ;
Remacle, J. -F. ;
Comblen, R. ;
Legat, V. ;
Hillewaert, K. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) :6514-6535
[2]   From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements [J].
Cantwell, C. D. ;
Sherwin, S. J. ;
Kirby, R. M. ;
Kelly, P. H. J. .
COMPUTERS & FLUIDS, 2011, 43 (01) :23-28
[3]  
Deville M.O., 2002, High-order methods for incompressible fluid flow
[4]  
Dubiner M., 1991, Journal of Scientific Computing, V6, P345, DOI 10.1007/BF01060030
[5]  
Gottlieb D., 1977, Numerical Analysis of Spectral Methods: Theory and Applications, DOI DOI 10.1137/1.9781611970425
[6]   Nodal high-order methods on unstructured grids - I. Time-domain solution of Maxwell's equations [J].
Hesthaven, JS ;
Warburton, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 181 (01) :186-221
[7]  
Hughes T. J. R., 2012, FINITE ELEMENT METHO
[8]  
Karniadakis G.E., 2005, Spectral/hp Element Methods for Computational Fluid Dynamics, V2nd
[9]  
Lee U., 2009, Spectral Element Method in Structural Dynamics
[10]  
ORSZAG S, 1979, ADV COMPUTER METHODS, V3, P148