The Calkin algebra is ℵ1-universal

被引:3
作者
Farah, Ilijas [1 ]
Hirshberg, Ilan [2 ]
Vignati, Alessandro [3 ]
机构
[1] York Univ, Dept Math & Stat, 4700 Keele St, N York, ON M3J 1P3, Canada
[2] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
[3] Inst Math Jussieu Paris Rive Gauche IMJ PRG, UP7D Campus Grands Moulins, F-75013 Paris, France
基金
以色列科学基金会; 加拿大自然科学与工程研究理事会;
关键词
C-ASTERISK-ALGEBRAS; SPACES;
D O I
10.1007/s11856-020-2007-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss the existence of (injectively) universal C*-algebras and prove that all C*-algebras of density character aleph(1) embed into the Calkin algebra, Q(H). Together with other results, this shows that each of the following assertions is relatively consistent with ZFC: (i) Q(H) is a 2(0)(aleph)-universal C*-algebra. (ii) There exists a 2(0)(aleph)-universal C*-algebra, but Q(H) is not 2(0)(aleph)-universal, (iii) A 2(0)(aleph)-universal C*-algebra does not exist. We also prove that it is relatively consistent with ZFC that (iv) there is no aleph(1)-universal nuclear C*-algebra, and that (v) there is no aleph(1)-universal simple nuclear C*-algebra.
引用
收藏
页码:287 / 309
页数:23
相关论文
共 44 条
  • [1] [Anonymous], 2000, OXFORD MATH MONOGRAP
  • [2] [Anonymous], 2013, C R MATH ACAD SCI SO
  • [3] [Anonymous], 2008, GRADUATE STUDIES MAT
  • [4] Blackadar B., 2006, Operator Algebras and Non-commutative Geometry, III, Encyclopaedia of Mathematical Sciences, V122
  • [5] Blackadar B, 1998, K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications, V5
  • [6] On universal Banach spaces of density continuum
    Brech, Christina
    Koszmider, Piotr
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 190 (01) : 93 - 110
  • [7] Dow A, 2000, FUND MATH, V163, P163
  • [8] A universal continuum of weight ℵ
    Dow, A
    Hart, KP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) : 1819 - 1838
  • [9] Exactness of Cuntz-Pimsner C*-algebras
    Dykema, KJ
    Shlyakhtenko, D
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2001, 44 : 425 - 444
  • [10] Effros E.G., 2000, London Mathematical Society Monographs, New Series, V23