Multi-level Feature Reweighting and Fusion for Instance Segmentation

被引:0
作者
Vo, Xuan-Thuy [1 ]
Tran, Tien-Dat [1 ]
Nguyen, Duy-Linh [1 ]
Jo, Kang-Hyun [1 ]
机构
[1] Univ Ulsan, Dept Elect Elect & Comp Engn, Ulsan 44610, South Korea
来源
2022 IEEE 20TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN) | 2022年
基金
新加坡国家研究基金会;
关键词
Instance segmentation; multi-level features; multi-scale fusion; cross-scale reweighting;
D O I
10.1109/INDIN51773.2022.9976099
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurate instance segmentation requires high-resolution features for performing a dense pixel-wise prediction task. However, using high-resolution feature maps results in highly expensive model complexity and ineffective receptive fields. To overcome the problems of high-resolution features, conventional methods explore multi-level feature fusion that exchanges the information between low-level features at earlier layers and high-level features at top layers. Both low and high information is extracted by the hierarchical backbone network where high-level features contain more semantic cues and low-level features encompass more specific patterns. Thus, adopting these features to the training segmentation model is necessary, and designing a more efficient multi-level feature fusion is crucial. Existing methods balance such information by using top-down and bottom-up pathway connections with more inefficient convolution layers to produce richer multi-scale features. In this work, we contribute two folds: (1) a simple but effective multi-level feature reweighting layer is proposed to strengthen deep high-level features based on channel reweighting generated from multiple features of the backbone, and (2) an efficient fusion block is proposed to process low-resolution features in a depth-to-spatial manner and combine enhanced multi-level features together. These designs enable the segmentation models to predict instance kernels for mask generation on high-level feature maps. To verify the effectiveness of the proposed method, we conduct experiments on the challenging benchmark dataset MS-COCO. Surprisingly, our simple network outperforms the baseline in both accuracy and inference speed. More specifically, we achieve 35.4% AP(mask) at 19.5 FPS on a GPU device, becoming a state-of-the-art instance segmentation method.
引用
收藏
页码:317 / 322
页数:6
相关论文
共 25 条
[1]   YOLACT Real-time Instance Segmentation [J].
Bolya, Daniel ;
Zhou, Chong ;
Xiao, Fanyi ;
Lee, Yong Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9156-9165
[2]  
Chen K, 2019, Arxiv, DOI [arXiv:1906.07155, 10.48550/arXiv.1906.07155, DOI 10.48550/ARXIV.1906.07155]
[3]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[4]  
Dosovitskiy A., 2021, P 9 INT C LEARN REPR
[5]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[8]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007
[9]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[10]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944