A numerical solution for fractional optimal control problems via Bernoulli polynomials

被引:85
|
作者
Keshavarz, E. [1 ]
Ordokhani, Y. [1 ]
Razzaghi, M. [2 ]
机构
[1] Alzahra Univ, Fac Math Sci, Dept Math, Tehran, Iran
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
关键词
Fractional order optimal control; Caputo fractional derivative; Riemann-Liouville fractional integration; Bernoulli polynomial basis; operational matrix; numerical solution; ORDER DIFFERENTIAL-EQUATIONS; WAVELET OPERATIONAL MATRIX; VARIATIONAL-PROBLEMS; GENERAL FORMULATION; DELAY SYSTEMS; SCHEME; HYBRID; INTEGRATION; CALCULUS; APPROXIMATION;
D O I
10.1177/1077546314567181
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper presents a new numerical method for solving fractional optimal control problems (FOCPs). The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon Bernoulli polynomials. The operational matrices of fractional Riemann-Liouville integration and multiplication for Bernoulli polynomials are derived. The error upper bound for the operational matrix of the fractional integration is also given. The properties of Bernoulli polynomials are utilized to reduce the given optimization problems to the system of algebraic equations. By using Newton's iterative method, this system is solved and the solution of FOCPs are achieved. Illustrative examples are included to demonstrate the validity and applicability of the technique.
引用
收藏
页码:3889 / 3903
页数:15
相关论文
共 50 条
  • [11] A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials
    Dehghan, Mehdi
    Hamedi, Ehsan-Allah
    Khosravian-Arab, Hassan
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (06) : 1547 - 1559
  • [12] Numerical solution of fractional variational and optimal control problems via fractional-order Chelyshkov functions
    Ahmed, A. I.
    Al-Sharif, M. S.
    Salim, M. S.
    Al-Ahmary, T. A.
    AIMS MATHEMATICS, 2022, 7 (09): : 17418 - 17443
  • [13] Numerical Solution of Nonlinear Fractional Volterra Integro-Differential Equations via Bernoulli Polynomials
    Tohidi, Emran
    Ezadkhah, M. M.
    Shateyi, S.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [14] Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems
    H. Hassani
    J. A. Tenreiro Machado
    Z. Avazzadeh
    E. Naraghirad
    M. Sh. Dahaghin
    Journal of Scientific Computing, 2020, 83
  • [15] Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems
    Hassani, H.
    Machado, J. A. Tenreiro
    Avazzadeh, Z.
    Naraghirad, E.
    Dahaghin, M. Sh.
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (02)
  • [16] Numerical Solution of Fractional Control Problems via Fractional Differential Transformation
    Rebenda, Josef
    Smarda, Zdenek
    2017 EUROPEAN CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (EECS), 2017, : 107 - 111
  • [17] Numerical Solution of Some Types of Fractional Optimal Control Problems
    Sweilam, Nasser Hassan
    Al-Ajami, Tamer Mostafa
    Hoppe, Ronald H. W.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [18] Fractional optimal control problems: optimality conditions and numerical solution
    Sayevand, Khosro
    Rostami, Mohammadreza
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (01) : 123 - 148
  • [19] A numerical method for solving optimal control problems via Legendre polynomials
    Gu, Yajing
    Yan, Hongyan
    Zhu, Yuanguo
    ENGINEERING COMPUTATIONS, 2020, 37 (08) : 2735 - 2759
  • [20] Application of Bernoulli Polynomials for Solving Variable-Order Fractional Optimal Control-Affine Problems
    Nemati, Somayeh
    Torres, Delfim F. M.
    AXIOMS, 2020, 9 (04) : 1 - 18