On moderately close inclusions for the Laplace equation

被引:7
作者
Bonnaillie-Noel, Virginie [1 ]
Dambrine, Marc [2 ]
Tordeux, Sebastien [3 ]
Vial, Gregory [1 ]
机构
[1] UEB, CNRS, ENS Cachan Bretagne, IRMAR, F-35170 Bruz, France
[2] Univ Technol Compiegne, LMAC, F-60200 Compiegne, France
[3] INSA Toulouse, MIP, F-31077 Toulouse 4, France
关键词
D O I
10.1016/j.crma.2007.10.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The presence of small inclusions modifies the solution of the Laplace equation posed in a reference domain Omega(0). This question has been widely studied for a single inclusion or well-separated inclusions. We investigate in this Note the case where the distance between the holes tends to zero but remains large with respect to their characteristic size. We first consider two perfectly insulated inclusions. In this configuration we give a complete multiscale asymptotic expansion of the solution to the Laplace equation. We also address the situation of a single inclusion close to a singular perturbation of the boundary partial derivative Omega(0).
引用
收藏
页码:609 / 614
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 2000, ASYMPTOTIC THEORY EL
[2]   Asymptotic formulas for the voltage potential in a composite medium containing close or touching disks of small diameter [J].
Ben Hassen, MF ;
Bonnetier, E .
MULTISCALE MODELING & SIMULATION, 2005, 4 (01) :250-277
[3]  
BONNAILLIENOEL V, 2007, UNPUB MODERATELY CLO
[4]   An elliptic regularity result for a composite medium with "touching" fibers of circular cross-section [J].
Bonnetier, E ;
Vogelius, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) :651-677
[5]  
Dambrine M, 2005, CONTROL CYBERN, V34, P117
[6]   A multiscale correction method for local singular perturbations of the boundary [J].
Dambrine, Marc ;
Vial, Gregory .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (01) :111-127
[7]  
ILLIN A, 1992, TRANSLATIONS MATH MO
[8]  
LEWINSKI T, 2000, DIFFERENTIAL GEOMETR, V268, P341
[9]   Asymptotic analysis of shape functionals [J].
Nazarov, SA ;
Sokolowski, J .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (02) :125-196
[10]  
NAZAROV SA, 2007, SPECTRAL PROBLEMS SH