Properties and H2 production ability of Pt photodeposited on the anatase phase transition of nitrogen-doped titanium dioxide

被引:41
作者
Huang, Bing-Shun [1 ]
Wey, Ming-Yen [1 ]
机构
[1] Natl Chung Hsing Univ, Dept Environm Engn, Taichung 402, Taiwan
关键词
H-2; Pt; N-Doped TiO2; Calcination temperatures; Photodeposition; TIO2; THIN-FILMS; PHOTOCATALYTIC HYDROGEN-PRODUCTION; CALCINATION TEMPERATURE; OPTICAL-PROPERTIES; WATER; DECOMPOSITION; FABRICATION; NANOCRYSTALS; IRRADIATION; EVOLUTION;
D O I
10.1016/j.ijhydene.2011.05.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of calcination temperature on the properties and H-2 production ability of nitrogen-doped (N-doped) titanium dioxide (TiO2) photodeposited with 0.2 wt% Pt (platinum) was studied. The increase in crystallinity of pre-calcinated N-doped TiO2 initiated at temperatures higher than 131 degrees C transformed the morphology from anomalous nano-structure to texture composed of nanoparticles and enhanced the specific surface areas. At 200-400 degrees C, the anatase peaks gradually became sharper and the visible light absorption region decreased due to the growth of crystallites and the decrease of N-doping content, respectively. Maximum H-2 production was reached when N-doped TiO2 was calcined at 200 degrees C followed by Pt photodeposition. The maximum condition is brought about by the formation of textures consisting of nanoparticles and a broad absorption region, thus creating superior active sites for photocatalytic H-2 production. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:9479 / 9486
页数:8
相关论文
共 65 条
[1]   Photoelectrochemical hydrogen production from water/methanol decomposition using Ag/TiO2 nanocomposite thin films [J].
Alenzi, Naser ;
Liao, Wei-Ssu ;
Cremer, Paul S. ;
Sanchez-Torres, Viviana ;
Wood, Thomas K. ;
Ehlig-Economides, Christine ;
Cheng, Zhengdong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (21) :11768-11775
[2]   A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst [J].
Amendola, SC ;
Sharp-Goldman, SL ;
Janjua, MS ;
Spencer, NC ;
Kelly, MT ;
Petillo, PJ ;
Binder, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (10) :969-975
[3]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[4]   An overview on semiconductor particulate systems for photoproduction of hydrogen [J].
Ashokkumar, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1998, 23 (06) :427-438
[5]   Hydrogen from biomass - Present scenario and future prospects [J].
Balat, Havva ;
Kirtay, Elif .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (14) :7416-7426
[6]   Potential importance of hydrogen as a future solution to environmental and transportation problems [J].
Balat, Mustafa .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (15) :4013-4029
[7]   Enhanced nitrogen doping in TiO2 nanoparticles [J].
Burda, C ;
Lou, YB ;
Chen, XB ;
Samia, ACS ;
Stout, J ;
Gole, JL .
NANO LETTERS, 2003, 3 (08) :1049-1051
[8]   Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity [J].
Chen, Daimei ;
Jiang, Zhongyi ;
Geng, Jiaqing ;
Wang, Qun ;
Yang, Dong .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (09) :2741-2746
[9]   Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder [J].
Chen, XB ;
Lou, YB ;
Samia, ACS ;
Burda, C ;
Gole, JL .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (01) :41-49
[10]   Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J].
Chen, XB ;
Burda, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) :15446-15449