Visual subspace clustering based on dimension relevance

被引:11
作者
Xia, Jiazhi [1 ]
Jiang, Guang [1 ]
Zhang, YuHong [1 ]
Li, Rui [1 ]
Chen, Wei [2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha, Hunan, Peoples R China
[2] Zhejiang Univ, State Key Lab CAD&CG, Hangzhou, Zhejiang, Peoples R China
基金
美国国家科学基金会; 高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
High dimensional data; Subspace clustering; Interactive visual analysis; Dimension relevance; DATA VISUALIZATION; EXPLORATION;
D O I
10.1016/j.jvlc.2017.05.003
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The proposed work aims at visual subspace clustering and addresses two challenges: an efficient visual subspace clustering workflow and an intuitive visual description of subspace structure. Handling the first challenge is to escape the circular dependency between detecting meaningful subspaces and discovering clusters. We propose a dimension relevance measure to indicate the cluster significance in the corresponding subspace. The dynamic dimension relevance guides the subspace exploring in our visual analysis system. To address the second challenge, we propose hyper-graph and the visualization of it to describe the structure of subspaces. Dimension overlapping between subspaces and data overlapping between clusters are clearly shown with our visual design. Experimental results demonstrate that our approach is intuitive, efficient, and robust in visual subspace clustering. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 28 条
  • [1] Achtert Elke, 2007, 2007 International Conference on Scientific and Statistical Database Management, DOI 10.1109/SSDBM.2007.21
  • [2] Aggarwal CC, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P61, DOI 10.1145/304181.304188
  • [3] Agrawal R., 1998, SIGMOD Record, V27, P94, DOI 10.1145/276305.276314
  • [4] [Anonymous], 2002, Principal components analysis
  • [5] [Anonymous], EUR C VIS EUROVIS ST
  • [6] [Anonymous], PROCEEDING 14 ACM SI, DOI DOI 10.1145/1401890.1402026
  • [7] [Anonymous], 2004, SIGKDD EXPLOR, DOI DOI 10.1145/1007730.1007731
  • [8] Assent I., 2007, ACM SIGKDD Explorations Newsletter, V9, P5, DOI DOI 10.1145/1345448.1345451
  • [9] Subspace selection for clustering high-dimensional data
    Baumgartner, C
    Plant, C
    Kailing, K
    Kriegel, HP
    Kröger, P
    [J]. FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, : 11 - 18
  • [10] BRUSHING SCATTERPLOTS
    BECKER, RA
    CLEVELAND, WS
    [J]. TECHNOMETRICS, 1987, 29 (02) : 127 - 142