Sequential Monte Carlo methods for navigation systems

被引:0
|
作者
Sotak, Milos [1 ]
机构
[1] Armed Forces Acad, Dept Elect, Liptovsky 03106 6, Mikulas, Slovakia
来源
PRZEGLAD ELEKTROTECHNICZNY | 2011年 / 87卷 / 06期
关键词
INS; GPS; navigation systems; particle filter; SENSORS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper deals with new approach to navigation information processing using Sequential Monte Carlo Methods known as particle filtering. Although, the Sequential Monte Carlo Methods require huge amount of computing, these methods are more efficient than Kalman filters especially when the system is nonlinear or if probability density function of the errors is non-Gaussian. The paper presents integration of Inertial Navigation System (INS) and Global Positioning System (GPS) using Sequential Monte Carlo Methods for navigation information processing. Navigation systems were created in simulation environment. An original asset of the work consists in creation of models in the simulation environment to confirm the algorithms.
引用
收藏
页码:249 / 252
页数:4
相关论文
共 50 条
  • [1] Sequential Monte Carlo methods for dynamic systems
    Liu, JS
    Chen, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1032 - 1044
  • [2] Sequential Monte Carlo Methods for System Identification
    Schon, Thomas B.
    Lindsten, Fredrik
    Dahlin, Johan
    Wagberg, Johan
    Naesseth, Christian A.
    Svensson, Andreas
    Dai, Liang
    IFAC PAPERSONLINE, 2015, 48 (28): : 775 - 786
  • [3] A SURVEY OF SEQUENTIAL MONTE CARLO METHODS FOR ECONOMICS AND FINANCE
    Creal, Drew
    ECONOMETRIC REVIEWS, 2012, 31 (03) : 245 - 296
  • [4] Sequential Monte Carlo methods for stochastic volatility models: a review
    Bishwal, Jaya P. N.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (06) : 619 - 635
  • [5] An overview of existing methods and recent advances in sequential Monte Carlo
    Cappe, Olivier
    Godsill, Simon J.
    Moulines, Eric
    PROCEEDINGS OF THE IEEE, 2007, 95 (05) : 899 - 924
  • [6] Sequential Monte-Carlo methods for radar pulse train deinterleaving
    Szkolnik, JJ
    Quinquis, A
    Seventh IASTED International Conference on Signal and Image Processing, 2005, : 311 - 314
  • [7] Sequential Monte Carlo methods for multiple target tracking and data fusion
    Hue, C
    Le Cadre, JP
    Pérez, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 309 - 325
  • [8] Sequential Monte Carlo Methods in Random Intercept Models for Longitudinal Data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    BAYESIAN STATISTICS IN ACTION, BAYSM 2016, 2017, 194 : 3 - 9
  • [9] Multi-target tracking in clutter with sequential Monte Carlo methods
    Liu, B.
    Ji, C.
    Zhang, Y.
    Hao, C.
    Wong, K. -K.
    IET RADAR SONAR AND NAVIGATION, 2010, 4 (05) : 662 - 672
  • [10] Maximum a posteriori voice conversion using sequential Monte Carlo methods
    Helander, Elina
    Silen, Hanna
    Miguez, Joaquin
    Gabbouji, Moncef
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 1716 - +