On curvature of surfaces immersed in normed spaces

被引:2
|
作者
Balestro, Vitor [1 ]
Martini, Horst [2 ]
Teixeira, Ralph [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
[2] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 192卷 / 02期
关键词
Alexandrov's theorem; Birkhoff-Gauss map; Finsler manifold; Minkowski curvature; Normed space; Relative differential geometry; Weyl's tube formula;
D O I
10.1007/s00605-020-01394-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The normal map given by Birkhoff orthogonality yields extensions of principal, Gaussian and mean curvatures to surfaces immersed in three-dimensional spaces whose geometry is given by an arbitrary norm and which are also called Minkowski spaces. The relations of this setting to the field of relative differential geometry are clarified. We obtain characterizations of the Minkowski Gaussian curvature in terms of surface areas, and respective generalizations of the classical theorems of Huber, Willmore, Alexandrov, and Bertrand-Diguet-Puiseux are derived. A generalization of Weyl's formula for the volume of tubes and some estimates for volumes and areas in terms of curvature are obtained, and in addition we discuss also two-dimensional subcases of the results in more detail.
引用
收藏
页码:291 / 309
页数:19
相关论文
共 50 条
  • [11] Saturating constructions for normed spaces
    S. J. Szarek
    N. Tomczak-Jaegermann
    Geometric & Functional Analysis GAFA, 2004, 14 : 1352 - 1375
  • [12] On bisectors in Minkowski normed spaces
    Horváth, AG
    ACTA MATHEMATICA HUNGARICA, 2000, 89 (03) : 233 - 246
  • [13] OPTIMAL BUNDLES IN NORMED SPACES
    Cuenya, H. H.
    Levis, F. E.
    Rodriguez, C. N.
    ANNALS OF FUNCTIONAL ANALYSIS, 2013, 4 (02): : 87 - 96
  • [14] Rotational surfaces in a 3-dimensional normed space
    Sakaki, Makoto
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (01): : 23 - 41
  • [15] Rotational surfaces in a 3-dimensional normed space
    Makoto Sakaki
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2024, 65 : 23 - 41
  • [16] Zone diagrams in Euclidean spaces and in other normed spaces
    Kawamura, Akitoshi
    Matousek, Jiri
    Tokuyama, Takeshi
    MATHEMATISCHE ANNALEN, 2012, 354 (04) : 1201 - 1221
  • [17] Zone diagrams in Euclidean spaces and in other normed spaces
    Akitoshi Kawamura
    Jiří Matoušek
    Takeshi Tokuyama
    Mathematische Annalen, 2012, 354 : 1201 - 1221
  • [18] A generalization of metric, normed, and unitary spaces
    Borubaev, A. A.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 154 - 156
  • [19] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    Okelo, N. B.
    Agure, J. O.
    Oleche, P. O.
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) : 1387 - 1397
  • [20] VARIOUS NOTIONS OF ORTHOGONALITY IN NORMED SPACES
    N.B.OKELO
    J.O.AGURE
    P.O.OLECHE
    ActaMathematicaScientia, 2013, 33 (05) : 1387 - 1397