The ZKIR Assay, a Real-Time PCR Method for the Detection of Klebsiella pneumoniae and Closely Related Species in Environmental Samples

被引:27
作者
Barbier, Elodie [1 ]
Rodrigues, Carla [2 ]
Depret, Geraldine [1 ]
Passet, Virginie [2 ]
Gal, Laurent [1 ]
Piveteau, Pascal [1 ]
Brisse, Sylvain [2 ]
机构
[1] Univ Bourgogne Franche Comte, INRAE, AgroSup Dijon, Agroecol, Dijon, France
[2] Inst Pasteur, Biodivers & Epidemiol Bacterial Pathogens, Paris, France
基金
欧盟地平线“2020”;
关键词
Klebsiella; phylogroup; soil; detection; screening; ZKIR qPCR; culture method; environment; MULTIPLEX-PCR; IDENTIFICATION; QUASIPNEUMONIAE; INFECTIONS; DIVERSITY; VARIICOLA; BACTERIA; GENE;
D O I
10.1128/AEM.02711-19
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Klebsiella pneumoniae is of growing public health concern due to the emergence of strains that are multidrug resistant, virulent, or both. Taxonomically, the K. pneumoniae complex ("Kp") includes seven phylogroups, with Kp1 (K. pneumoniae sensu stricto) being medically prominent. Kp can be present in environmental sources such as soils and vegetation, which could act as reservoirs of animal and human infections. However, the current lack of screening methods to detect Kp in complex matrices limits research on Kp ecology. Here, we analyzed 1,001 genome sequences and found that existing molecular detection targets lack specificity for Kp. A novel real-time PCR method, the ZKIR (zur-khe intergenic region) assay, was developed and used to detect Kp in 96 environmental samples. The results were compared to a culture-based method using Simmons citrate agar with 1% inositol medium coupled to matrix-assisted laser desorption ionization-time of flight mass spectrometry identification. Whole-genome sequencing of environmental Kp was performed. The ZKIR assay was positive for the 48 tested Kp reference strains, whereas 88 non-Kp strains were negative. The limit of detection of Kp in spiked soil microcosms was 1.5 x 10(-1) CFU g(-1) after enrichment for 24 h in lysogeny broth supplemented with ampicillin, and it was 1.5 x 10(3) to 1.5 x 10(4) CFU g(-1) directly after soil DNA extraction. The ZKIR assay was more sensitive than the culture method. Kp was detected in 43% of environmental samples. Genomic analysis of the isolates revealed a predominance of phylogroups Kp1 (65%) and Kp3 (32%), a high genetic diversity (23 multilocus sequence types), a quasi-absence of antibiotic resistance or virulence genes, and a high frequency (50%) of O-antigen type 3. This study shows that the ZKIR assay is an accurate, specific, and sensitive novel method to detect the presence of Kp in complex matrices and indicates that Kp isolates from environmental samples differ from clinical isolates. IMPORTANCE The Klebsiella pneumoniae species complex Kp includes human and animal pathogens, some of which are emerging as hypervirulent and/or antibiotic-resistant strains. These pathogens are diverse and classified into seven phylogroups, which may differ in their reservoirs and epidemiology. Proper management of this public health hazard requires a better understanding of Kp ecology and routes of transmission to humans. So far, detection of these microorganisms in complex matrices such as food or the environment has been difficult due to a lack of accurate and sensitive methods. Here, we describe a novel method based on real-time PCR which enables detection of all Kp phylogroups with high sensitivity and specificity. We used this method to detect Kp isolates from environmental samples, and we show based on genomic sequencing that they differ in antimicrobial resistance and virulence gene content from human clinical Kp isolates. The ZKIR PCR assay will enable rapid screening of multiple samples for Kp presence and will thereby facilitate tracking the dispersal patterns of these pathogenic strains across environmental, food, animal and human sources.
引用
收藏
页数:15
相关论文
共 46 条
[1]  
[Anonymous], CAB REV PERSPECT AGR
[2]   Isolation and Characterization of Aquatic-Borne Klebsiella pneumoniae from Tropical Estuaries in Malaysia [J].
Barati, Anis ;
Ghaderpour, Aziz ;
Chew, Li Lee ;
Bong, Chui Wei ;
Thong, Kwai Lin ;
Chong, Ving Ching ;
Chai, Lay Ching .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2016, 13 (04)
[3]   Assessment of pathogenic bacteria in treated graywater and irrigated soils [J].
Benami, Maya ;
Gross, Amit ;
Herzberg, Moshe ;
Orlofsky, Ezra ;
Vonshak, Ahuva ;
Gillor, Osnat .
SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 458 :298-302
[4]   Development of a multiplex PCR assay for identification of Klebsiella pneumoniae hypervirulent clones of capsular serotype K2 [J].
Bialek-Davenet, Suzanne ;
Criscuolo, Alexis ;
Ailloud, Florent ;
Passet, Virginie ;
Nicolas-Chanoine, Marie-Helene ;
Decre, Dominique ;
Brisse, Sylvain .
JOURNAL OF MEDICAL MICROBIOLOGY, 2014, 63 :1608-1614
[5]   Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae [J].
Blin, Camille ;
Passet, Virginie ;
Touchon, Marie ;
Rocha, Eduardo P. C. ;
Brisse, Sylvain .
ENVIRONMENTAL MICROBIOLOGY, 2017, 19 (05) :1881-1898
[6]  
Brisse S, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 6, THIRD EDITION, P159, DOI 10.1007/0-387-30746-x_8
[7]   Description of Klebsiella quasipneumoniae sp nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp quasipneumoniae subsp nov and Klebsiella quasipneumoniae subsp similipneumoniae subsp nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola [J].
Brisse, Sylvain ;
Passet, Virginie ;
Grimont, Patrick A. D. .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2014, 64 :3146-3152
[8]   Cloning of a gene encoding a unique haemolysin from Klebsiella pneumoniae and its potential use as a species-specific gene probe [J].
Chuang, YC ;
Su, JH ;
Lin, CN ;
Chang, MC .
MICROBIAL PATHOGENESIS, 2002, 33 (01) :1-6
[9]  
Criscuolo A, 2019, Research Ideas and Outcomes, V5, DOI DOI 10.3897/RIO.5.E36178
[10]   Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread [J].
David, Sophia ;
Reuter, Sandra ;
Harris, Simon R. ;
Glasner, Corinna ;
Feltwell, Theresa ;
Argimon, Silvia ;
Abudahab, Khalil ;
Goater, Richard ;
Giani, Tommaso ;
Errico, Giulia ;
Aspbury, Marianne ;
Sjunnebo, Sara ;
Feil, Edward J. ;
Rossolini, Gian Maria ;
Aanensen, David M. ;
Grundmann, Hajo ;
Koraqi, Andi ;
Lacej, Denada ;
Apfalter, Petra ;
Hartl, Rainer ;
Glupczynski, Youri ;
Huang, Te-Din ;
Strateva, Tanya ;
Marteva-Proevska, Yuliya ;
Tambic Andrasevic, Arjana ;
Butic, Iva ;
Pieridou-Bagatzouni, Despo ;
Maikanti-Charalampous, Panagiota ;
Hrabak, Jaroslav ;
Zemlickova, Helena ;
Hammerum, Anette ;
Jakobsen, Lotte ;
Ivanova, Marina ;
Pavelkovich, Anastasia ;
Jalava, Jari ;
Osterblad, Monica ;
Dortet, Laurent ;
Vaux, Sophie ;
Kaase, Martin ;
Gatermann, Soeren G. ;
Vatopoulos, Alkiviadis ;
Tryfinopoulou, Kyriaki ;
Toth, Akos ;
Janvari, Laura ;
Boo, Teck Wee ;
McGrath, Elaine ;
Carmeli, Yehuda ;
Adler, Amos ;
Pantosti, Annalisa ;
Monaco, Monica .
NATURE MICROBIOLOGY, 2019, 4 (11) :1919-1929