A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations

被引:9
作者
Zheng, Lin [1 ,4 ]
Chen, Liang [2 ]
Ma, Yanfang [3 ,5 ]
机构
[1] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
[2] Changzhou Inst Technol, Sch Sci, Changzhou 213032, Jiangsu, Peoples R China
[3] Changzhou Inst Technol, Sch Comp Sci & Informat Engn, Changzhou 213032, Jiangsu, Peoples R China
[4] Anhui Univ Finance & Econ, Inst Quantitat Econ, Bengbu 233030, Anhui, Peoples R China
[5] Huaibei Normal Univ, Sch Comp Sci & Technol, Huaibei 235000, Anhui, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
关键词
systems of nonlinear equations; Levenberg-Marquardt method; global convergence; Wolfe line search; error bound condition; CONVERGENCE;
D O I
10.3934/math.2022073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Levenberg-Marquardt method is one of the most important methods for solving systems of nonlinear equations and nonlinear least-squares problems. It enjoys a quadratic convergence rate under the local error bound condition. Recently, to solve nonzero-residue nonlinear least-squares problem, Behling et al. propose a modified Levenberg-Marquardt method with at least superlinearly convergence under a new error bound condtion [3]. To extend their results for systems of nonlinear equations, by choosing the LM parameters adaptively, we propose an efficient variant of the Levenberg-Marquardt method and prove its quadratic convergence under the new error bound condition. We also investigate its global convergence by using the Wolfe line search. The effectiveness of the new method is validated by some numerical experiments.
引用
收藏
页码:1241 / 1256
页数:16
相关论文
共 21 条
[1]   Local convergence of the Levenberg-Marquardt method under Holder metric subregularity [J].
Ahookhosh, Masoud ;
Aragon Artacho, Francisco J. ;
Fleming, Ronan M. T. ;
Vuong, Phan T. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) :2771-2806
[2]   An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations [J].
Amini, Keyvan ;
Rostami, Faramarz ;
Caristi, Giuseppe .
OPTIMIZATION, 2018, 67 (05) :637-650
[3]   Local Convergence Analysis of the Levenberg-Marquardt Framework for Nonzero-Residue Nonlinear Least-Squares Problems Under an Error Bound Condition [J].
Behling, Roger ;
Goncalves, Douglas S. ;
Santos, Sandra A. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (03) :1099-1122
[4]  
Dennis J. E., 1996, NUMERICAL METHODS UN
[5]   A note on the Levenberg-Marquardt parameter [J].
Fan, Jinyan ;
Pan, Jianyu .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :351-359
[6]   On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption [J].
Fan, JY ;
Yuan, YX .
COMPUTING, 2005, 74 (01) :23-39
[8]   Solving Mathematical Programs with Equilibrium Constraints [J].
Guo, Lei ;
Lin, Gui-Hua ;
Ye, Jane J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 166 (01) :234-256
[9]   GLOBAL HOLDERIAN ERROR BOUND FOR NONDEGENERATE POLYNOMIALS [J].
Ha Huy Vui .
SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (02) :917-933
[10]   GLOBAL ERROR BOUNDS FOR SYSTEMS OF CONVEX POLYNOMIALS OVER POLYHEDRAL CONSTRAINTS [J].
Huynh Van Ngai .
SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (01) :521-539