Analytical representation of the density derivative of the Percus-Yevick hard-sphere radial distribution function

被引:5
作者
Kelly, Braden D. [1 ]
Smith, William R. [1 ,2 ]
Henderson, Douglas [3 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON, Canada
[2] Univ Ontario, Inst Technol, Fac Sci, Oshawa, ON, Canada
[3] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Hard-sphere; Percus-Yevick; radial distribution function; integral equation; PERTURBATION-THEORY; FLUIDS; EQUATION; LIQUIDS; STATE; DECAY; MODEL;
D O I
10.1080/00268976.2016.1164908
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Explicit analytical expressions are presented for the density derivative, partial derivative g(HS) (R; rho)/partial derivative rho, of the Percus-Yevick approximation to the hard-sphere radial distribution function for R <= 6 sigma, where s is the hard-sphere diameter and rho = (N/V) sigma(3) is the reduced density, where N is the number of particles and V is the volume. A FORTRAN program is provided for the implementation of these for R <= 6 sigma, which includes code for the calculation of g(HS) (R; rho) itself over this range. We also present and incorporate within the program code convenient analytical expressions for the numerical extrapolation of both quantities past R = 6 sigma. Our expressions are numerically tested against exact results. [GRAPHICS] .
引用
收藏
页码:2446 / 2450
页数:5
相关论文
共 16 条
[1]   PERTURBATION THEORY AND EQUATION OF STATE FOR FLUIDS - SQUARE-WELL POTENTIAL [J].
BARKER, JA ;
HENDERSON, D .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (08) :2856-+
[2]   PERTURBATION THEORY AND EQUATION OF STATE FOR FLUIDS .2. A SUCCESSFUL THEORY OF LIQUIDS [J].
BARKER, JA ;
HENDERSO.D .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (11) :4714-&
[3]   CORRELATION FUNCTIONS + CRITICAL REGION OF SIMPLE FLUIDS [J].
FISHER, ME .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :944-+
[4]   DECAY OF CORRELATIONS IN LINEAR SYSTEMS [J].
FISHER, ME ;
WIODM, B .
JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (09) :3756-&
[5]   PERTURBATION-THEORY FOR RADIAL DISTRIBUTION FUNCTION [J].
GUBBINS, KE ;
SMITH, WR ;
THAM, MK ;
TIEPEL, EW .
MOLECULAR PHYSICS, 1971, 22 (06) :1089-&
[7]   EXACT ANALYTICAL FORMULAS FOR DISTRIBUTION FUNCTIONS OF CHARGED HARD SPHERES IN MEAN SPHERICAL APPROXIMATION [J].
HENDERSON, D ;
SMITH, WR .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (02) :191-200
[8]   ANALYSIS OF CLASSICAL STATISTICAL MECHANICS BY MEANS OF COLLECTIVE COORDINATES [J].
PERCUS, JK ;
YEVICK, GJ .
PHYSICAL REVIEW, 1958, 110 (01) :1-13
[9]   Fortran codes for the correlation functions of hard sphere fluids [J].
Smith, W. R. ;
Henderson, D. J. ;
Leonard, P. J. ;
Barker, J. A. ;
Grundke, E. W. .
MOLECULAR PHYSICS, 2008, 106 (01) :3-7
[10]   ANALYTICAL REPRESENTATION OF PERCUS-YEVICK HARD-SPHERE RADIAL DISTRIBUTION FUNCTION [J].
SMITH, WR ;
HENDERSON, D .
MOLECULAR PHYSICS, 1970, 19 (03) :411-+