Surface imaging using holographic optical tweezers

被引:66
作者
Phillips, D. B. [1 ]
Grieve, J. A. [1 ]
Olof, S. N. [1 ]
Kocher, S. J. [1 ]
Bowman, R. [2 ]
Padgett, M. J. [2 ]
Miles, M. J. [1 ]
Carberry, D. M. [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[2] Univ Glasgow, Dept Phys & Astron, SUPA, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
ATOMIC-FORCE MICROSCOPY; PROBE; TRAP; POSITION; CELLS;
D O I
10.1088/0957-4484/22/28/285503
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present an imaging technique using an optically trapped cigar-shaped probe controlled using holographic optical tweezers. The probe is raster scanned over a surface, allowing an image to be taken in a manner analogous to scanning probe microscopy (SPM), with automatic closed loop feedback control provided by analysis of the probe position recorded using a high speed CMOS camera. The probe is held using two optical traps centred at least 10 mu m from the ends, minimizing laser illumination of the tip, so reducing the chance of optical damage to delicate samples. The technique imparts less force on samples than contact SPM techniques, and allows highly curved and strongly scattering samples to be imaged, which present difficulties for imaging using photonic force microscopy. To calibrate our technique, we first image a known sample-the interface between two 8 mu m polystyrene beads. We then demonstrate the advantages of this technique by imaging the surface of the soft alga Pseudopediastrum. The scattering force of our laser applied directly onto this sample is enough to remove it from the surface, but we can use our technique to image the algal surface with minimal disruption while it is alive, not adhered and in physiological conditions. The resolution is currently equivalent to confocal microscopy, but as our technique is not diffraction limited, there is scope for significant improvement by reducing the tip diameter and limiting the thermal motion of the probe.
引用
收藏
页数:7
相关论文
共 28 条
[21]   Breaking the speed limit with atomic force microscopy [J].
Picco, L. M. ;
Bozec, L. ;
Ulcinas, A. ;
Engledew, D. J. ;
Antognozzi, M. ;
Horton, M. A. ;
Miles, M. J. .
NANOTECHNOLOGY, 2007, 18 (04)
[22]   Increasing trap stiffness with position clamping in holographic optical tweezers [J].
Preece, Daryl ;
Bowman, Richard ;
Linnenberger, Anna ;
Gibson, Graham ;
Serati, Steven ;
Padgett, Miles .
OPTICS EXPRESS, 2009, 17 (25) :22718-22725
[23]   Optical particle trapping with computer-generated holograms written on a liquid-crystal display [J].
Reicherter, M ;
Haist, T ;
Wagemann, EU ;
Tiziani, HJ .
OPTICS LETTERS, 1999, 24 (09) :608-610
[24]   Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps [J].
Rodrigo, PJ ;
Gammelgaard, L ;
Boggild, P ;
Perch-Nielsen, IR ;
Glückstad, J .
OPTICS EXPRESS, 2005, 13 (18) :6899-6904
[25]   Trapping and tracking a local probe with a photonic force microscope [J].
Rohrbach, A ;
Tischer, C ;
Neumayer, D ;
Florin, EL ;
Stelzer, EHK .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (06) :2197-2210
[26]   An overview of the biophysical applications of atomic force microscopy [J].
Santos, NC ;
Castanho, MARB .
BIOPHYSICAL CHEMISTRY, 2004, 107 (02) :133-149
[27]   Imaging of lactic acid bacteria with AFM - elasticity and adhesion maps and their relationship to biological and structural data [J].
Schaer-Zammaretti, P ;
Ubbink, J .
ULTRAMICROSCOPY, 2003, 97 (1-4) :199-208
[28]   Thermal motion of a holographically trapped SPM-like probe [J].
Simpson, Stephen H. ;
Hanna, Simon .
NANOTECHNOLOGY, 2009, 20 (39)