Global existence and exponential decay of strong solutions for the three-dimensional Boussinesq equations

被引:1
作者
Shang, Zhaoyang [1 ,2 ]
Tang, Fuquan [2 ]
机构
[1] Shanghai Lixin Univ Accounting & Finance, Sch Finance, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
关键词
Boussinesq equations; Blow-up criterion; Global strong solutions; Exponential decay rate; BLOW-UP CRITERION; LOCAL EXISTENCE;
D O I
10.1186/s13660-020-02315-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the global existence of strong solutions to the three-dimensional Boussinesq equations on the smooth bounded domain omega. Based on the blow-up criterion and uniform estimates, we prove that the strong solution exists globally in time if the initial -norm of velocity and temperature are small. Moreover, an exponential decay rate of the strong solution is obtained.
引用
收藏
页数:10
相关论文
共 17 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]   LARGE TIME DECAY AND GROWTH FOR SOLUTIONS OF A VISCOUS BOUSSINESQ SYSTEM [J].
Brandolese, Lorenzo ;
Schonbek, Maria E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (10) :5057-5090
[3]   Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations [J].
Chae, D ;
Kim, SK ;
Nam, HS .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :55-80
[4]   Local existence and blow-up criterion for the Boussinesq equations [J].
Chae, D ;
Nam, HS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :935-946
[5]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[6]   Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces [J].
Danchin, Raphael ;
Paicu, Marius .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (10-12) :1444-1460
[7]   Global strong solutions to the nonhomogeneous incompressible MHD equations in a bounded domain [J].
Fan, Jishan ;
Li, Fucai .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 46 :1-11
[8]   On the stability of global solutions to the 3D Boussinesq system [J].
Liu, Xiaopan ;
Li, Yuxiang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :580-591
[9]  
Majda A., 2003, Introduction to PDEs and Waves for the Atmosphere and Ocean
[10]  
Majda A.J, 2002, Cambridge Texts Appl. Math., DOI DOI 10.1017/CBO9780511613203