Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells

被引:15
|
作者
Anderson, Tom H. [1 ]
Civiletti, Benjamin J. [1 ]
Monk, Peter B. [1 ]
Lakhtakia, Akhlesh [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
Solar cell; Coupled optoelectronic simulation; Drift-diffusion model; Hybridizable discontinuous Galerkin method; Rigorous coupled-wave approach; FINITE-ELEMENT-METHOD; DIFFERENTIAL EVOLUTION; WAVE ANALYSIS; CONVERGENCE; ENHANCEMENT; PERFORMANCE; MULTISCALE; EFFICIENCY; GRATINGS; GALERKIN;
D O I
10.1016/j.jcp.2020.109242
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A design tool was formulated for optimizing the efficiency of inorganic, thin-film, photovoltaic solar cells. The solar cell can have multiple semiconductor layers in addition to antireflection coatings, passivation layers, and buffer layers. The solar cell is backed by a metallic grating which is periodic along a fixed direction. The rigorous coupled-wave approach is used to calculate the electron-hole-pair generation rate. The hybridizable discontinuous Galerkin method is used to solve the drift-diffusion equations that govern charge-carrier transport in the semiconductor layers. The chief output is the solar-cell efficiency which is maximized using the differential evolution algorithm to determine the optimal dimensions and bandgaps of the semiconductor layers. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Coupled optoelectronic simulation and optimization of thin-film photovoltaic solar cells (vol 407, 109242, 2020)
    Anderson, Tom H.
    Civiletti, Benjamin J.
    Monk, Peter B.
    Lakhtakia, Akhlesh
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418
  • [2] Coupled spectral-hybridizable-discontinuous-Galerkin modeling of thin-film photovoltaic solar cells
    Anderson, Tom H.
    Civiletti, Benjamin J.
    Monk, Peter B.
    Lakhtakia, Akhlesh
    NEW CONCEPTS IN SOLAR AND THERMAL RADIATION CONVERSION AND RELIABILITY, 2018, 10759
  • [3] Optoelectronic optimization of graded-bandgap thin-film AlGaAs solar cells
    Ahmad, Faiz
    Lakhtakia, Akhlesh
    Monk, Peter B.
    APPLIED OPTICS, 2020, 59 (04) : 1018 - 1027
  • [4] Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells
    McPheeters, Claiborne O.
    Hu, Dongzhi
    Schaadt, Daniel M.
    Yu, Edward T.
    JOURNAL OF OPTICS, 2012, 14 (02)
  • [5] Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology
    Jiang, Xianyuan
    Zang, Zihao
    Zhou, Yuanyuan
    Li, Hansheng
    Wei, Qi
    Ning, Zhijun
    ACCOUNTS OF MATERIALS RESEARCH, 2021, 2 (04): : 210 - 219
  • [6] Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells
    Deceglie, Michael G.
    Ferry, Vivian E.
    Alivisatos, A. Paul
    Atwater, Harry A.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (02): : 599 - 604
  • [7] Accounting for Localized Defects in the Optoelectronic Design of Thin-Film Solar Cells
    Deceglie, Michael G.
    Ferry, Vivian E.
    Alivisatos, A. Paul
    Atwater, Harry A.
    2012 IEEE 38TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), VOL 2, 2013,
  • [8] TMM-Sim: A versatile tool for optical simulation of thin-film solar cells
    Benatto, Leandro
    Mesquita, Omar
    Pacheco, Kaike R. M.
    Roman, Lucimara S.
    Koehler, Marlus
    Capaz, Rodrigo B.
    Candiotto, Graziani
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 300
  • [9] GeSe thin-film solar cells
    Liu, Shun-Chang
    Yang, Yusi
    Li, Zongbao
    Xue, Ding-Jiang
    Hu, Jin-Song
    MATERIALS CHEMISTRY FRONTIERS, 2020, 4 (03) : 775 - 787
  • [10] Towards numerical simulation of nonhomogeneous thin-film silicon solar cells
    Anderson, Tom H.
    Faryad, Muhammad
    Mackay, Tom G.
    Lakhtakia, Akhlesh
    PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES III, 2014, 8981