Hydrophilic membrane-based humidity control

被引:56
作者
Scovazzo, P
Burgos, J
Hoehn, A
Todd, P
机构
[1] Univ Colorado, Dept Chem Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Boulder, CO 80309 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
membrane condenser; dehumidification; theory; microporous and porous membranes;
D O I
10.1016/S0376-7388(98)00176-8
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A dehumidification system for low gravity plant growth experiments requires the generation of no free-liquid condensate and the recovery of water for reuse. In the systems discussed in this paper, the membrane is a barrier between the humid air phase and a liquid-coolant water phase. The coolant water temperature combined with a transmembrane pressure differential establishes a water flux from the humid air into the coolant water. Building on the work of others, we directly compared different hydrophilic membranes for humidity control. In a direct comparison of the hydrophilic membranes, hollow fiber cellulose ester membranes were superior to metal and ceramic membranes in the categories of condensation flux per surface area, ease of start-up, and stability. However, cellulose ester membranes were inferior to metal membranes in one significant category, durability. Dehumidification systems using mixed cellulose ester membranes failed after operational times of only hours to days. We propose that the ratio of fluid surface area to membrane material area (congruent to membrane porosity) controls the relative performances among membranes. In addition, we clarified design equations for operational parameters such as the transmembrane pressure differential. This technology has several potential benefits related to earth environmental issues including the minimization of airborne pathogen release and higher energy efficiency in air conditioning equipment. Utilizing these study results, we designed, constructed, and flew, on the space shuttle missions a membrane-based dehumidification system for a plant growth chamber. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 13 条
  • [1] SEPARATION EFFICIENCY IN VACUUM MEMBRANE DISTILLATION
    BANDINI, S
    GOSTOLI, C
    SARTI, GC
    [J]. JOURNAL OF MEMBRANE SCIENCE, 1992, 73 (2-3) : 217 - 229
  • [2] Bird R.B., 2006, TRANSPORT PHENOMENA, Vsecond
  • [3] Corey A.T., 1994, MECH IMMISCIBLE FLUI
  • [4] DUFFIE NA, 1994, SAE 24 INT C ENV SYS
  • [5] HO WSW, 1992, MEMBRANE HDB
  • [6] HOEHN A, 1996, P 6 EUR S LIF SCI RE
  • [7] Kays W.M., 1955, Compact Heat Exchangers, V2nd ed.
  • [8] MULDER M, 1996, BASIC PRINICIPLES ME
  • [9] NEWBOLD DD, 1993, 23 INT C ENV SYST CO
  • [10] NEWBOLD DD, 1996, 26 INT C ENV SYST MO