Extended rectangular fuzzy b-metric space with application

被引:5
作者
Saleem, Naeem [1 ]
Furqan, Salman [1 ]
Abbas, Mujahid [2 ,3 ]
Jarad, Fahd [4 ,5 ]
机构
[1] Univ Management & Technol, Dept Math, Lahore 54000, Pakistan
[2] Govt Coll Univ, Dept Math, Lahore 54000, Pakistan
[3] China Med Univ, Dept Med Res, Taichung, Taiwan
[4] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 09期
关键词
fuzzy metric space; rectangular fuzzy b -metric space; Ciric type contractions; fixed points; integral equations; FIXED-POINT THEOREMS;
D O I
10.3934/math.2022885
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an extended rectangular fuzzy b-metric space which generalizes rectangular fuzzy b-metric space and rectangular fuzzy metric space. We show that an extended rectangular fuzzy b-metric space is not Hausdorff. A Banach fixed point theorem is proved as a special case of our main result where a ' Ciric type contraction was employed. Our main result generalizes some comparable results in rectangular fuzzy b-metric space and rectangular fuzzy metric space. We provide some examples to support the concepts and results presented herein. As an application of our result, we obtain the existence of the solution of the integral equation.
引用
收藏
页码:16208 / 16230
页数:23
相关论文
共 33 条
  • [1] Abbas M, 2019, Communications in Nonlinear Analysis, V6, P1
  • [2] Fuzzy b-Metric Spaces: Fixed Point Results for ψ-Contraction Correspondences and Their Application
    Abbas, Mujahid
    Lael, Fatemeh
    Saleem, Naeem
    [J]. AXIOMS, 2020, 9 (02)
  • [3] Bakhtin I.A., 1989, FUNCTIONAL ANAL, V30, P26, DOI DOI 10.1039/AP9892600037
  • [4] Banach S., 1922, Fund. Math, V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
  • [5] Fixed point theorems in partially ordered metric spaces and applications
    Bhaskar, T. Gnana
    Lakshmikantham, V.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (07) : 1379 - 1393
  • [6] Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
  • [7] Introduction to fuzzy partial differential equations
    Buckley, JJ
    Feuring, T
    [J]. FUZZY SETS AND SYSTEMS, 1999, 105 (02) : 241 - 248
  • [8] GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE
    CIRIC, LB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) : 267 - 273
  • [9] Czerwik S., 1993, ACTA MATH INFORM U O, V1, P5
  • [10] On optimal fuzzy best proximity coincidence points of fuzzy order preserving proximal Ψ(σ, α)-lower-bounding asymptotically contractive mappings in non-Archimedean fuzzy metric spaces
    De la Sen, Manuel
    Abbas, Mujahid
    Saleem, Naeem
    [J]. SPRINGERPLUS, 2016, 5