On Lie Ideals and Automorphisms in Prime Rings

被引:1
作者
Rehman, N. [1 ]
机构
[1] Aligarh Muslim Univ, Aligarh 202001, Uttar Pradesh, India
关键词
prime ring; Lie ideal; automorphism; DERIVATIONS; VALUES;
D O I
10.1134/S0001434620010137
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring of characteristic different from 2 with center Z and extended centroid C, and let L be a Lie ideal of R. Consider two nontrivial automorphisms alpha and beta of R for which there exist integers m,n >= 1 such that alpha(u)(n) + beta(u)(m) = 0 for all u is an element of L. It is shown that, under these assumptions, either L is central or R subset of M-2(C) (where M-2(C) is the ring of 2 x 2 matrices over C), L is commutative, and u(2) is an element of Z for all u is an element of L. In particular, if L =[R, R], then R is commutative.
引用
收藏
页码:140 / 144
页数:5
相关论文
共 22 条
[1]  
Beidar K I, 1996, MONOGR TXB PURE APPL
[2]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[3]   LIE IDEALS AND DERIVATIONS OF PRIME-RINGS [J].
BERGEN, J ;
HERSTEIN, IN ;
KERR, JW .
JOURNAL OF ALGEBRA, 1981, 71 (01) :259-267
[4]   Commutators with power central values on a Lie ideal [J].
Carini, L ;
De Filippis, V .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 193 (02) :269-278
[5]  
CARINI L, 1985, B UNIONE MAT ITAL, V4A, P497
[6]   DIFFERENTIAL IDENTITIES WITH AUTOMORPHISMS AND ANTIAUTOMORPHISMS .2. [J].
CHUANG, CL .
JOURNAL OF ALGEBRA, 1993, 160 (01) :130-171
[7]   GPIS HAVING COEFFICIENTS IN UTUMI QUOTIENT-RINGS [J].
CHUANG, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (03) :723-728
[8]  
De Filliippis V., 2014, INT J MATH MATH SCI
[9]  
DIVINCENZO OM, 1989, B UNIONE MAT ITAL, V3A, P77
[10]  
Divinsky N., 1955, T ROY SOC CANADA, V49, P19