Iterative quantum-assisted eigensolver

被引:25
作者
Bharti, Kishor [1 ]
Haug, Tobias [1 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevA.104.L050401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The task of estimating the ground state of Hamiltonians is an important problem in physics with numerous applications ranging from solid-state physics to combinatorial optimization. We provide a hybrid quantum-classical algorithm for approximating the ground state of a Hamiltonian that builds on the powerful Krylov subspace method in a way that is suitable for current quantum computers. Our algorithm systematically constructs the ansatz by using any given choice of the initial state and the unitaries describing the Hamiltonian. The only task of the quantum computer is to measure overlaps and no feedback loops are required. The measurements can be performed efficiently on current quantum hardware without requiring any complicated measurements such as the Hadamard test. Finally, a classical computer solves a well-characterized quadratically constrained optimization program. Our algorithm can reuse previous measurements to calculate the ground state of a wide range of Hamiltonians without requiring additional quantum resources. Further, we demonstrate our algorithm for solving a class of problems with thousands of qubits. The algorithm works for almost every random choice of the initial state and circumvents the barren plateau problem.
引用
收藏
页数:6
相关论文
共 37 条
[1]   SHADOW TOMOGRAPHY OF QUANTUM STATES [J].
Aaronson, Scott .
SIAM JOURNAL ON COMPUTING, 2020, 49 (05)
[2]  
[Anonymous], ARXIV160207674
[3]  
[Anonymous], ARXIV190907344
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation [J].
Bespalova, Tatiana A. ;
Kyriienko, Oleksandr .
PRX QUANTUM, 2021, 2 (03)
[6]  
Bharti K, ARXIV200911001
[7]  
Bharti K., ARXIV210108448
[8]   Training Variational Quantum Algorithms Is NP-Hard [J].
Bittel, Lennart ;
Kliesch, Martin .
PHYSICAL REVIEW LETTERS, 2021, 127 (12)
[9]  
Boyd L., 2004, Convex Optimization, DOI DOI 10.1017/CBO9780511804441
[10]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915