Interaction and Quantum Capacitance of Nitrogen/Sulfur Co-Doped Graphene: A Theoretical Calculation

被引:42
|
作者
Chen, Liangliang [1 ]
Li, Xin [1 ]
Ma, Chengwei [1 ]
Wang, Min [1 ]
Zhou, Jiangqi [1 ]
机构
[1] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
关键词
SUPERCAPACITOR APPLICATIONS; OXYGEN REDUCTION; PERFORMANCE; SULFUR; ELECTRODES; DENSITY; CARBON; ELECTROCATALYST; ULTRACAPACITORS; GENERATION;
D O I
10.1021/acs.jpcc.7b04551
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interaction between different configurations of nitrogen and sulfur, as well as the influence on the quantum capacitance of N/S co-doped graphene. was investigated by applying density functional theory calculations. It was found that the sulfur atom tends to dislocate from the graphene plane in the presence of a pyrrolic-N atom. However, in the presence of pyridinic-N, the sulfur atom maintains its sp2 hybridization in both 6- and 5-membered rings. Moreover, at low concentration, sulfur doping produces a new state close to the Fermi level, which enhances the maximum quantum capacitance of the co-doped graphene up to 50%. Nevertheless, there is no further improvement when another nitrogen or sulfur atom was embedded into the co-doped graphene.
引用
收藏
页码:18344 / 18350
页数:7
相关论文
共 50 条
  • [31] A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries
    Xu, Jing
    Su, Dawei
    Zhang, Wenxue
    Bao, Weizhai
    Wang, Guoxiu
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (44) : 17381 - 17393
  • [32] Facile preparation of sulfur/nitrogen co-doped graphene coupled with Ni(OH)2 for battery-type electrode with superior electrochemical performance
    Zhu, Yuanyi
    Cui, Jinlong
    An, Shengli
    Li, Ziqing
    Zhang, Yongqiang
    He, Wenxiu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 810
  • [33] Nitrogen and sulfur co-doped graphene composite electrode with high electrocatalytic activity for vanadium redox flow battery application
    Li, Qiang
    Bai, Anyu
    Xue, Zhichao
    Zheng, Yang
    Sun, Hong
    ELECTROCHIMICA ACTA, 2020, 362
  • [34] Nitrogen and Sulfur co-Doped Carbon Quantum Dots for Accurate Detection of pH in Gastric Juice
    Huang, Jialing
    Liu, Fengjiao
    Wang, Tingling
    Liu, Cuie
    Zheng, Fengying
    Wang, Zhenhong
    Li, Shunxing
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (07): : 1513 - 1520
  • [35] MoS2/sulfur and nitrogen co-doped reduced graphene oxide nanocomposite for enhanced electrocatalytic hydrogen evolution
    Ren, Xianpei
    Ren, Xiaodong
    Pang, Liuqing
    Zhang, Yunxia
    Ma, Qiang
    Fan, Haibo
    Liu, Shengzhong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (02) : 916 - 923
  • [36] Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells
    Kannan, Aravindaraj G.
    Zhao, Jinxing
    Jo, Sung Geun
    Kang, Yong Soo
    Kim, Dong-Won
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) : 12232 - 12239
  • [37] Nitrogen and sulfur co-doped carbon nanospheres for highly efficient oxidation of ethylbenzene
    Liu, Minghui
    Liu, Yingcen
    Gao, Zhanming
    Wang, Cui
    Ye, Wanyue
    Lu, Rongwen
    Zhang, Shufen
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (19) : 15962 - 15967
  • [38] Synthesis of nitrogen and phosphorus co-doped graphene quantum dots as metal-free electrocatalysts for ethanol electrooxidation
    Chalani, Mina
    Daneshvari-Esfahlan, Vahid
    Hosseini, Mir Ghasem
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2022, 30 (08) : 853 - 862
  • [39] Nitrogen and sulfur co-doped hierarchical porous carbon as functional sulfur host for lithium-sulfur batteries
    Wang, Biao
    Hu, Jinlong
    Zhang, Lingzhi
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [40] Nitrogen and Sulfur Co-Doped Carbon Quantum Dot-Engineered TiO2 Graphene on Carbon Fabric for Photocatalysis Applications
    Ambade, Rohan B.
    Ali, Mumtaz
    Lee, Ki Hyun
    Jeong, Woojae
    Jeong, Sung Hoon
    Han, Tae Hee
    ACS APPLIED NANO MATERIALS, 2023, 6 (17) : 15782 - 15794