Polynomial extensions of Baer and quasi-Baer rings

被引:135
作者
Birkenmeier, GF [1 ]
Kim, JY
Park, JK
机构
[1] Univ SW Louisiana, Dept Math, Lafayette, LA 70504 USA
[2] Kyung Hee Univ, Dept Math, Suwon 449701, South Korea
[3] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
16W60; Primary; 16S36; Secondary; 16W10;
D O I
10.1016/S0022-4049(00)00055-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A ring R is called (quasi-) Baer if the right annihilator of every (ideal) nonempty subset of R is generated, as a right ideal, by an idempotent of R. Armendariz has shown that for a reduced ring R (i.e., R has no nonzero nilpotent elements), R is Baer if and only if R[x] is Baer. In this paper, we show that for many polynomial extensions (including formal power series. Laurent polynomials, and Laurent series), a ring R is quasi-Baer if and only if the polynomial extension over R is quasi-Baer. As a consequence, we obtain a generalization of Armendariz's result for several types of polynomial extensions over reduced rings. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 42
页数:18
相关论文
共 19 条
[1]  
Armendariz E.P., 1974, J AUSTR MATH SOC, V18, P470
[2]   ISOMORPHIC ORE EXTENSIONS [J].
ARMENDARIZ, EP ;
KOO, HK ;
PARK, JK .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (12) :2633-2652
[3]  
Berberian SK, 1972, BAER RINGS
[4]   BAER RINGS AND QUASICONTINUOUS RINGS HAVE A MDSN [J].
BIRKENMEIER, GF .
PACIFIC JOURNAL OF MATHEMATICS, 1981, 97 (02) :283-292
[5]   DECOMPOSITIONS OF BAER-LIKE RINGS [J].
BIRKENMEIER, GF .
ACTA MATHEMATICA HUNGARICA, 1992, 59 (3-4) :319-326
[6]  
BIRKENMEIER GF, IN PRESS ALGEBRA
[7]   TWISTED MATRIX UNITS SEMIGROUP ALGEBRAS [J].
CLARK, WE .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) :417-&
[8]  
FAITH C, 1979, LECT NOTES MATH, V700, P151
[9]  
GROENEWALD NJ, 1983, PUBL I MATH, V34, P71
[10]  
HAN J, SOME RESULTS SKEW PO