EFFICIENCY BASED ADAPTIVE LOCAL REFINEMENT FOR FIRST-ORDER SYSTEM LEAST-SQUARES FORMULATIONS

被引:31
作者
Adler, J. H. [1 ]
Manteuffel, T. A. [2 ]
McCormick, S. F. [2 ]
Nolting, J. W. [3 ]
Ruge, J. W. [2 ]
Tang, L. [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[3] GeoEye Inc, Thornton, CO 80241 USA
基金
美国国家科学基金会;
关键词
adaptive local refinement; algebraic multigrid; first-order system least-squares; nested iteration; magnetohydrodynamics; FINITE-ELEMENT METHOD; H-P-VERSION; PARTIAL-DIFFERENTIAL-EQUATIONS; RESISTIVE MAGNETOHYDRODYNAMICS; 1-DIMENSION; IMPLICIT; SOLVER; FOSLS;
D O I
10.1137/100786897
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose new adaptive local refinement (ALR) strategies for first-order system least-squares finite elements in conjunction with algebraic multigrid methods in the context of nested iteration. The goal is to reach a certain error tolerance with the least amount of computational cost and nearly uniform distribution of the error over all elements. To accomplish this, the refinement decision at each refinement level is determined based on optimizing efficiency measures that take into account both error reduction and computational cost. Two efficiency measures are discussed: predicted error reduction and predicted computational cost. These methods are first applied to a two-dimensional (2D) Poisson problem with steep gradients, and the results are compared with the threshold-based methods described in [W. Dorfler, SIAM J. Numer. Anal., 33 (1996), pp. 1106-1124]. Next, these methods are applied to a 2D reduced model of the incompressible, resistive magnetohydrodynamic equations. These equations are used to simulate instabilities in a large aspect-ratio tokamak. We show that, by using the new ALR strategies on this system, we are able to resolve the physics using only 10 percent of the computational cost used to approximate the solutions on a uniformly refined mesh within the same error tolerance.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 34 条
  • [1] NESTED ITERATION AND FIRST-ORDER SYSTEM LEAST SQUARES FOR INCOMPRESSIBLE, RESISTIVE MAGNETOHYDRODYNAMICS
    Adler, J. H.
    Manteuffel, T. A.
    Mccormick, S. F.
    Ruge, J. W.
    Sanders, G. D.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) : 1506 - 1526
  • [2] FIRST-ORDER SYSTEM LEAST SQUARES FOR INCOMPRESSIBLE RESISTIVE MAGNETOHYDRODYNAMICS
    Adler, J. H.
    Manteuffel, T. A.
    McCormick, S. F.
    Ruge, J. W.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) : 229 - 248
  • [3] [Anonymous], 1995, A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement Techniques
  • [4] [Anonymous], 2002, TEXTS APPL MATH
  • [5] Bank R. E., 2003, SIAM Review, V45, P291, DOI 10.1137/S003614450342061
  • [6] Bateman G., 1978, MHD Instabilities
  • [7] Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients: Part II
    Berndt, M
    Manteuffel, TA
    McCormick, SF
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) : 409 - 436
  • [8] Berndt M., 1997, Electron. Trans. Numer. Anal., V6, P35
  • [9] Adaptive algebraic multigrid
    Brezina, M
    Falgout, R
    Maclachlan, S
    Manteuffel, T
    Mccormick, S
    Ruge, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) : 1261 - 1286
  • [10] Adaptive smoothed aggregation (αSA) multigrid
    Brezina, M
    Falgout, R
    MacLachlan, S
    Manteuffel, T
    McCormick, S
    Ruge, J
    [J]. SIAM REVIEW, 2005, 47 (02) : 317 - 346