Aceso: A Medical Image Analysis Platform Using Deep Learning

被引:0
|
作者
Nguyen, Tan H. [1 ]
Pham Duy Hai [2 ]
Cong Son Doan Huynh [3 ]
Huy Tan Nguyen [4 ]
机构
[1] NVIDIA Deep Learning Inst, IT Dept, Ho Chi Minh City, Vietnam
[2] FPT Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
[3] HCMUTE, Fac Elect Engn Technol, Ho Chi Minh City, Vietnam
[4] Van Lang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
来源
2021 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR) | 2021年
关键词
Radiology; Aceso Platform; Deep Learning; !text type='Python']Python[!/text; Medical Image Analysis; Machine Learning;
D O I
10.1109/AIPR52630.2021.9762190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Universally, deep learning researchers and medical professionals have always had a gap that hinders their interaction: their expertise or use of technology. To bridge this gap, we have developed a medical image analysis platform that uses deep learning to make it easier for them to work together. We have built the third version platform where users can upload and process a medical image to check, research, aid in their diagnosis or training. Unfortunately, open-source codes are unavailable, but we allow users to download the free trial version on their local server. This article will discuss the three main contents in detail: how we have built the platform, how it supports users, and how we use models in our system. Primarily, we have integrated some popular models into this platform with a dataset of over 180,000 patients. In addition, the platform can help us detect 20 different diseases related to the lungs, such as Covid-19, Pneumonia, Atelectasis, Consolidation, Edema, Effusion, Lung Lesion, etc. The models' Accuracy is over 90 percent. The platform is freely available on the website: https://aceso.tech/ (*). Note: we have split our platform into 14 classes, 18 classes, and 20 classes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Medical image analysis using deep learning algorithms
    Li, Mengfang
    Jiang, Yuanyuan
    Zhang, Yanzhou
    Zhu, Haisheng
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [2] Deep Learning Applications in Medical Image Analysis
    Ker, Justin
    Wang, Lipo
    Rao, Jai
    Lim, Tchoyoson
    IEEE ACCESS, 2018, 6 : 9375 - 9389
  • [3] Deep Learning in Medical Image Analysis
    Shen, Dinggang
    Wu, Guorong
    Suk, Heung-Il
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 19, 2017, 19 : 221 - 248
  • [4] Deep Learning in Medical Image Analysis
    Chan, Heang-Ping
    Samala, Ravi K.
    Hadjiiski, Lubomir M.
    Zhou, Chuan
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 : 3 - 21
  • [5] Trends in Deep Learning for Medical Hyperspectral Image Analysis
    Khan, Uzair
    Paheding, Sidike
    Elkin, Colin P.
    Devabhaktuni, Vijaya Kumar
    IEEE ACCESS, 2021, 9 (09): : 79534 - 79548
  • [6] Medical Image Analysis Using Deep Learning: A Systematic Literature Review
    Kumar, E. Sudheer
    Bindu, C. Shoba
    EMERGING TECHNOLOGIES IN COMPUTER ENGINEERING: MICROSERVICES IN BIG DATA ANALYTICS, 2019, 985 : 81 - 97
  • [7] A Review of Deep Learning on Medical Image Analysis
    Wang, Jian
    Zhu, Hengde
    Wang, Shui-Hua
    Zhang, Yu-Dong
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (01) : 351 - 380
  • [8] A Review of Deep Learning on Medical Image Analysis
    Jian Wang
    Hengde Zhu
    Shui-Hua Wang
    Yu-Dong Zhang
    Mobile Networks and Applications, 2021, 26 : 351 - 380
  • [9] A review on deep learning in medical image analysis
    S. Suganyadevi
    V. Seethalakshmi
    K. Balasamy
    International Journal of Multimedia Information Retrieval, 2022, 11 : 19 - 38
  • [10] Deep Learning in Multimodal Medical Image Analysis
    Xu, Yan
    HEALTH INFORMATION SCIENCE, HIS 2019, 2019, 11837 : 193 - 200