Traveling-Wave Amplification in a Circuit With Nonuniform Grating

被引:3
作者
Ponomarenko, S. S. [1 ]
Likhachev, A. A. [1 ]
Vlasenko, S. A. [1 ,2 ]
Kovshov, Yu S. [1 ]
Stoyanova, V. V. [1 ]
Kishko, S. A. [1 ]
Khutoryan, E. M. [1 ]
Kuleshov, A. N. [1 ]
Lukin, K. A. [1 ]
Tatematsu, Y. [3 ]
Tani, M. [3 ]
机构
[1] Natl Acad Sci Ukraine IRE NASU, O Ya Usikov Inst Radio Phys & Elect, UA-61085 Kharkiv, Ukraine
[2] Kharkov Natl Univ, Sch Chem, UA-61022 Kharkiv, Ukraine
[3] Univ Fukui FIR FU, Res Ctr Dev Far Infrared Reg, Fukui 9108507, Japan
关键词
Nonuniform grating (NUG); sheet electron beam; slow wave circuit; traveling-wave tube (TWT); SUB-THZ; TUBE; POWER; PERFORMANCE; AMPLIFIER; GAIN;
D O I
10.1109/TED.2021.3105951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of both numerical simulations and experimental study of the traveling-wave amplification in the W-band circuit with the nonuniform grating are presented and discussed. The circuit supports a wide sheet electron beam that is promising for a signal gain increase in terahertz (THz) amplifiers. The small-signal gain up to 30 dB is predicted by the simulations of the two-section amplifier in the frequency range from 94 to 99 GHz. The experimental tests of the 14.3-mm input section, powered by a 3.8 kV, 100-mA sheet electron beam, revealed the linear gain of 12 dB and instantaneous bandwidth of 2 GHz. The full bandwidth of 5 GHz has been experimentally observed by adjusting the beam voltage from 3.6 to 4.1 kV.
引用
收藏
页码:5232 / 5237
页数:6
相关论文
共 46 条
  • [1] André F, 2020, IEEE T ELECTRON DEV, V67, P2919, DOI 10.1109/TED.2020.2993243
  • [2] [Anonymous], 2011, MAGIC 3 2 0 HELP MAN
  • [3] A Compact Extremely High Frequency MPM Power Amplifier
    Armstrong, Carter M.
    Kowalczyk, Richard
    Zubyk, Andrew
    Berg, Kevin
    Meadows, Clark
    Chan, Danny
    Schoemehl, Thomas
    Duggal, Ramon
    Hinch, Nora
    True, Richard B.
    Tobin, Robert
    Sweeney, Michael
    Weatherford, Brandon
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (06) : 2183 - 2188
  • [4] Performance of a Nano-CNC Machined 220-GHz Traveling Wave Tube Amplifier
    Baig, Anisullah
    Gamzina, Diana
    Kimura, Takuji
    Atkinson, John
    Domier, Calvin
    Popovic, Branko
    Himes, Logan
    Barchfeld, Robert
    Field, Mark
    Luhmann, Neville C., Jr.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (05) : 2390 - 2397
  • [5] Borisov A. A., 2011, 2011 IEEE International Vacuum Electronics Conference (IVEC 2011), P437, DOI 10.1109/IVEC.2011.5747063
  • [6] Terahertz Orotrons and Oromultipliers
    Bratman, V. L.
    Dumesh, B. S.
    Fedotov, A. E.
    Makhalov, P. B.
    Movshevich, B. Z.
    Rusin, F. S.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2010, 38 (06) : 1466 - 1471
  • [7] Bryerton E, 2019, GLOB SYM MILLIM WAVE, P29, DOI [10.1109/gsmm.2019.8797648, 10.1109/GSMM.2019.8797648]
  • [8] Demonstration of a W-Band Traveling-Wave Tube Power Amplifier With 10-GHz Bandwidth
    Cook, Alan M.
    Wright, Edward L.
    Nguyen, Khanh T.
    Joye, Colin D.
    Rodgers, John C.
    Jaynes, Reginald L.
    Chernyavskiy, Igor A.
    Wood, Frank N.
    Albright, Benjamin S., Jr.
    Abe, David K.
    Calame, Jeffrey P.
    Levush, Baruch
    Pershing, Dean E.
    Atkinson, John
    Kimura, Takuji
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (05) : 2492 - 2498
  • [9] Deal WR, 2010, IEEE MTT S INT MICR, P1122, DOI 10.1109/MWSYM.2010.5514771
  • [10] Evdokimenko Yu. I., 1982, Soviet Physics - Doklady, V27, P554