Strongly magnetized hot QCD matter and stochastic gravitational wave background

被引:7
|
作者
Khodadi, Mohsen [1 ]
Dey, Ujjal Kumar [2 ]
Lambiase, Gaetano [3 ,4 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Astron, POB 19395-5531, Tehran, Iran
[2] Indian Inst Sci Educ & Res Berhampur, Dept Phys Sci, Transit Campus, Berhampur 760010, Odisha, India
[3] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
[4] Ist Nazl Fis Nucl, Grp Collegato Salerno, Sez Napoli, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy
关键词
PHASE-TRANSITION; RADIATION; FIELDS;
D O I
10.1103/PhysRevD.104.063039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The first-order phase transitions in the early Universe are one of the well-known sources which release the stochastic background of gravitational waves (GWs). In this paper, we study the contribution of an external static and strong magnetic field on the stochastic background of gravitational waves expected during QCD phase transition. In the light of the strongly magnetized hot QCD equation of state which deviated from the ideal gas up to the one-loop approximation, we estimate two phenomenologically important quantities: peak frequency redshifted to today (f(peak)) and GW strain amplitude (h(2)Omega(gw)). The trace anomaly induced by the magnetized hot QCD matter around the phase transition generates the stochastic background of GW with peak frequencies lower than the ideal gas-based signal (around nHz). Instead, the strain amplitudes corresponding to the peak frequencies are of the same order of magnitude of the expected signal from ideal gas. This may be promising in the sense that although the strong magnetic field could mask the expected stochastic background of GWs by upgrading the frequency sensitivity of detectors in the future, the magnetized GW is expected to be identified. Faced with the projected reach of detectors EFTA, IPTA, and SKA, we find that for the tail of the magnetized GW signals there remains a mild possibility of detection as it can reach the projected sensitivity of SKA.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Resonant features in the stochastic gravitational wave background
    Fumagalli, Jacopo
    Renaux-Petel, Sebastien
    Witkowski, Lukas T.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [32] Wave-optics limit of the stochastic gravitational wave background
    Garoffolo, Alice
    PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [33] Impact of nonextensivity on the transport coefficients of a magnetized hot and dense QCD matter
    Shubhalaxmi Rath
    Sadhana Dash
    The European Physical Journal C, 83
  • [34] Impact of nonextensivity on the transport coefficients of a magnetized hot and dense QCD matter
    Rath, Shubhalaxmi
    Dash, Sadhana
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (09):
  • [35] Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors
    Wu, Cheng-Jian
    Mandic, Vuk
    Regimbau, Tania
    PHYSICAL REVIEW D, 2013, 87 (04):
  • [36] μ-hybrid inflation, gravitino dark matter, and stochastic gravitational wave background from cosmic strings
    Afzal, Adeela
    Ahmed, Waqas
    Rehman, Mansoor Ur
    Shafi, Qaisar
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [37] The stochastic gravitational-wave background in the absence of horizons
    Barausse, Enrico
    Brito, Richard
    Cardoso, Vitor
    Dvorkin, Irina
    Pani, Paolo
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (20)
  • [38] Probing the Universe through the stochastic gravitational wave background
    Kuroyanagi, Sachiko
    Chiba, Takeshi
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):
  • [39] Gravitational wave stochastic background in reduced Horndeski theories
    Lobato, Joao C.
    Matos, Isabela S.
    Calvao, Mauricio O.
    Waga, Ioav
    PHYSICAL REVIEW D, 2022, 106 (10)
  • [40] Limits on Anisotropy in the Nanohertz Stochastic Gravitational Wave Background
    Taylor, S. R.
    Mingarelli, C. M. F.
    Gair, J. R.
    Sesana, A.
    Theureau, G.
    Babak, S.
    Bassa, C. G.
    Brem, P.
    Burgay, M.
    Caballero, R. N.
    Champion, D. J.
    Cognard, I.
    Desvignes, G.
    Guillemot, L.
    Hessels, J. W. T.
    Janssen, G. H.
    Karuppusamy, R.
    Kramer, M.
    Lassus, A.
    Lazarus, P.
    Lentati, L.
    Liu, K.
    Oslowski, S.
    Perrodin, D.
    Petiteau, A.
    Possenti, A.
    Purver, M. B.
    Rosado, P. A.
    Sanidas, S. A.
    Smits, R.
    Stappers, B.
    Tiburzi, C.
    van Haasteren, R.
    Vecchio, A.
    Verbiest, J. P. W.
    PHYSICAL REVIEW LETTERS, 2015, 115 (04)