Numerical and Experimental Investigation of Shell-and-Tube Phase-Change Material Thermal Energy Storage Unit

被引:5
|
作者
Sherer, Thomas H., II [1 ]
Joshi, Yogendra [1 ]
机构
[1] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
phase-change material; thermal energy storage; shell-and-tube; crossflow; paraffin; HEAT-TRANSFER; OPERATING-CONDITIONS; SYSTEM; SOLIDIFICATION; EXCHANGER; BEHAVIOR; WATER;
D O I
10.1115/1.4034101
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solid liquid phase-change materials (PCMs) present a promising approach for reducing data center cooling costs. We review prior research in this area. A shell-and-tube PCM thermal energy storage (TES) unit is then analyzed numerically and experimentally. The tube bank is filled with commercial paraffin RUBITHERM RT 28 HC PCM, which melts as the heat transfer fluid (HTF) flows across the tubes. A fully implicit one-dimensional control volume formulation that utilizes the enthalpy method for phase change has been developed to determine the transient temperature distributions in both the PCM and the tubes themselves. The energy gained by a column of tubes is used to determine the exit bulk HTF temperature from that column, ultimately leading to an exit HTF temperature from the TES unit. This paper presents a comparison of the numerical and experimental results for the transient temperature profiles of the PCM-filled tubes and HTF.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit
    Parsazadeh, Mohammad
    Duan, Xili
    APPLIED ENERGY, 2018, 216 : 142 - 156
  • [32] Numerical study of the heat charging and discharging characteristics of a shell-and-tube phase change heat storage unit
    Wang, Wei-Wei
    Zhang, Kun
    Wang, Liang-Bi
    He, Ya-Ling
    APPLIED THERMAL ENGINEERING, 2013, 58 (1-2) : 542 - 553
  • [33] Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material
    Lin, Wenzhu
    Ling, Ziye
    Fang, Xiaoming
    Zhang, Zhengguo
    APPLIED THERMAL ENGINEERING, 2021, 186
  • [34] NUMERICAL-SIMULATION OF A SHELL-AND-TUBE LATENT-HEAT THERMAL-ENERGY STORAGE UNIT
    LACROIX, M
    SOLAR ENERGY, 1993, 50 (04) : 357 - 367
  • [35] Experimental investigations on the thermal energy storage performance of shell and tube unit with composite phase change materials
    Niu, Zhaoyang
    Yu, Jiabang
    Cui, Xin
    Yang, Xiaohu
    Sun, Yanjun
    Yan, Jinyue
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4889 - 4896
  • [36] The numerical analysis of the melting process in a modified shell-and-tube phase change material heat storage system
    Mourad, Abed
    Aissa, Abderrahmane
    Abed, Azher M.
    Smaisim, Ghassan Fadhil
    Toghraie, Davood
    Fazilati, Mohammad Ali
    Younis, Obai
    Guedri, Kamel
    Alizadeh, As'ad
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [37] NUMERICAL INVESTIGATION OF MELTING PROCESS IN HORIZONTAL SHELL-AND-TUBE PHASE CHANGE MATERIAL STORAGE CONSIDERING DIFFERENT HTF CHANNEL GEOMETRIES
    Ajarostaghi, Seyed Soheil Mousavi
    Delavar, Mojtaba Aghajani
    Dolati, Adel
    HEAT TRANSFER RESEARCH, 2017, 48 (16) : 1515 - 1529
  • [38] Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit
    Zhang, Shuai
    Yan, Yuying
    RENEWABLE ENERGY, 2022, 198 : 1210 - 1223
  • [40] Numerical investigation of a shell-and-tube latent heat thermal energy storage system for urban heating network
    Lamrani, Bilal
    Kousksou, Tarik
    JOURNAL OF ENERGY STORAGE, 2021, 43