Adaptive second-order sliding mode control with uncertainty compensation

被引:38
作者
Bartolini, G. [1 ]
Levant, A. [2 ]
Pisano, A. [1 ]
Usai, E. [1 ]
机构
[1] Univ Cagliari, Dept Elect & Elect Engn DIEE, Cagliari, Italy
[2] Tel Aviv Univ, Appl Math Dept, Tel Aviv, Israel
关键词
Second-order sliding modes; uncertain systems; nonlinear systems; adaptation; OUTPUT-FEEDBACK CONTROL; ORDER; DIFFERENTIATION; DESIGN;
D O I
10.1080/00207179.2016.1142616
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper endows the second-order sliding mode control (2-SMC) approach with additional capabilities of learning and control adaptation. We present a 2-SMC scheme that estimates and compensates for the uncertainties affecting the system dynamics. It also adjusts the discontinuous control effort online, so that it can be reduced to arbitrarily small values. The proposed scheme is particularly useful when the available information regarding the uncertainties is conservative, and the classical 'fixed-gain' SMC would inevitably lead to largely oversized discontinuous control effort. Benefits from the viewpoint of chattering reduction are obtained, as confirmed by computer simulations.
引用
收藏
页码:1747 / 1758
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 1988, Differential Equations with Discontinuous Righthand Sides
[2]  
Bartolini G, 1999, LECT NOTES CONTR INF, V247, P329
[3]  
Bartolini G., 1999, 7 IEEE MED C CONTR S
[4]   Adaptation of sliding modes [J].
Bartolini, Giorgio ;
Levant, Arie ;
Plestan, Franck ;
Taleb, Mohammed ;
Punta, Elisabetta .
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2013, 30 (03) :285-300
[5]  
Bartolini G, 2008, LECT NOTES CONTR INF, V375, P3, DOI 10.1007/978-3-540-79016-7_1
[6]  
Capisani L., 2011, 18 INT FED AUT CONTR, P10319
[7]  
Evangelista C, 2014, IEEE DECIS CONTR P, P2038, DOI 10.1109/CDC.2014.7039698
[8]   Variable Gain Super-Twisting Sliding Mode Control [J].
Gonzalez, Tenoch ;
Moreno, Jaime A. ;
Fridman, Leonid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :2100-2105
[9]  
Isidori A., 1995, NONLINEAR CONTROL SY, V3rd, DOI 10.1007/978-1-84628-615-5
[10]  
Khalil H., 2014, Control of Nonlinear Systems