Enhanced Electroconversion CO2-to-Formate by Oxygen-Vacancy-Rich Ultrasmall Bi-Based Catalyst Over a Wide Potential Window

被引:8
作者
Wang, Xueli [1 ]
Zhang, Lu-Hua [1 ]
Chen, Datong [1 ]
Zhan, Jiayu [1 ]
Guo, Jiangyi [1 ]
Zhang, Zisheng [1 ,3 ]
Yu, Fengshou [1 ,2 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Natl Local Joint Engn Lab Energy Conservat Chem P, Tianjin 300130, Peoples R China
[2] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Liaoning, Peoples R China
[3] Univ Ottawa, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada
基金
中国国家自然科学基金;
关键词
Bi-based catalysts; electrochemical CO2 reduction; formate; oxygen vacancy; wide potential window; ELECTROCHEMICAL CO2 REDUCTION; CARBON-DIOXIDE; FORMATE; NANOSHEETS; DENSITY; METAL; OXIDE;
D O I
10.1002/cctc.202101873
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bi-based materials quickly rise as promising candidates for electrochemical CO2-to-formate conversion. However, most of them only display a narrow potential range for the desired formate selectivity. Herein, we designed an oxygen-vacancy-rich ultrasmall bismuth subcarbonate supported on reduced graphene oxide composite (Vo-BOC/G) for electrochemical CO2-toformate conversion. The Vo-BOC/G exhibits an outstanding formate selectivity up to 100% at 1.2 V vs. RHE and an impressive partial current density of 38 mAcm(-2) in 0.1 M KHCO3. More importantly, the considerable formate selectivity (> 80%) was obtained over an impressively wide potential range of 600 mV, superior over most of reported Bi-based electrocatalysts under the same conditions. Theoretical results show the abundant Vo defects significantly lower energy barrier for *CO2 formation, resulting in high formate selectivity over a wider potential window. This work may pave the way for Bibased materials application in different renewable energyconversion devices.
引用
收藏
页数:6
相关论文
共 42 条
[1]  
[Anonymous], 2018, ANGEW CHEM, V130, P12972
[2]  
[Anonymous], 2018, ANGEW CHEM, V130, P13467
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   A Tandem Strategy for Enhancing Electrochemical CO2 Reduction Activity of Single-Atom Cu-S1N3 Catalysts via Integration with Cu Nanoclusters [J].
Chen, Datong ;
Zhang, Lu-Hua ;
Du, Jian ;
Wang, Honghai ;
Guo, Jiangyi ;
Zhan, Jiayu ;
Li, Fei ;
Yu, Fengshou .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (45) :24022-24027
[5]   Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals [J].
Chen, Shichuan ;
Wang, Hui ;
Kang, Zhixiong ;
Jin, Sen ;
Zhang, Xiaodong ;
Zheng, Xusheng ;
Qi, Zeming ;
Zhu, Junfa ;
Pan, Bicai ;
Xie, Yi .
NATURE COMMUNICATIONS, 2019, 10 (1)
[6]   Nitrogen-Doped Graphene Quantum Dots Enhance the Activity of Bi2O3 Nanosheets for Electrochemical Reduction of CO2 in a Wide Negative Potential Region [J].
Chen, Zhipeng ;
Mou, Kaiwen ;
Wang, Xiaohan ;
Liu, Licheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (39) :12790-12794
[7]   Enhancing electroreduction of CO2 over Bi2WO6 nanosheets by oxygen vacancies [J].
Chu, Mengen ;
Chen, Chunjun ;
Guo, Weiwei ;
Lu, Lu ;
Wu, Yahui ;
Wu, Haihong ;
He, Mingyuan ;
Han, Buxing .
GREEN CHEMISTRY, 2019, 21 (10) :2589-2593
[8]   2D Metal Oxyhalide-Derived Catalysts for Efficient CO2 Electroreduction [J].
de Arquer, F. Pelayo Garcia ;
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao-Thang Dinh ;
Seifitokaldani, Ali ;
Saidaminov, Makhsud I. ;
Tan, Chih-Shan ;
Quan, Li Na ;
Proppe, Andrew ;
Kibria, Md. Golam ;
Kelley, Shana O. ;
Sinton, David ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2018, 30 (38)
[9]   Bismuth Oxides with Enhanced Bismuth-Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate [J].
Deng, Peilin ;
Wang, Hongming ;
Qi, Ruijuan ;
Zhu, Jiexin ;
Chen, Shenghua ;
Yang, Fan ;
Zhou, Liang ;
Qi, Kai ;
Liu, Hongfang ;
Xia, Bao Yu .
ACS CATALYSIS, 2020, 10 (01) :743-750
[10]   Efficient CO2 Reduction to HCOOH with High Selectivity and Energy Efficiency over Bi/rGO Catalyst [J].
Duan, Yan-Xin ;
Liu, Kai-Hua ;
Zhang, Qi ;
Yan, Jun-Min ;
Jiang, Qing .
SMALL METHODS, 2020, 4 (05)