Cytoskeletal Pinning Controls Phase Separation in Multicomponent Lipid Membranes

被引:36
|
作者
Arumugam, Senthil [1 ,2 ,3 ]
Petrov, Eugene P. [4 ]
Schwille, Petra [4 ]
机构
[1] Ctr Rech, Inst Curie, Paris, France
[2] CNRS, Phys Chim Curie, UMR 168, Paris, France
[3] CNRS, Endocyt Trafficking & Therapeut Delivery Grp, UMR 3666, Paris, France
[4] Max Planck Inst Biochem, Dept Cellular & Mol Biophys, Martinsried, Germany
关键词
CRITICAL FLUCTUATIONS; MODEL MEMBRANES; CELL-MEMBRANES; FTSZ; VESICLES; BILAYERS; ACTIN; TRANSITION; PROTEINS; DOMAINS;
D O I
10.1016/j.bpj.2014.12.050
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We study the effect of a minimal cytoskeletal network formed on the surface of giant unilamellar vesicles by the prokaryotic tubulin homolog, FtsZ, on phase separation in freestanding lipid membranes. FtsZ has been modified to interact with the membrane through a membrane targeting sequence from the prokaryotic protein MinD. FtsZ with the attached membrane targeting sequence efficiently forms a highly interconnected network on membranes with a concentration-dependent mesh size, much similar to the eukaryotic cytoskeletal network underlying the plasma membrane. Using giant unilamellar vesicles formed from a quaternary lipid mixture, we demonstrate that the artificial membrane-associated cytoskeleton, on the one hand, suppresses large-scale phase separation below the phase transition temperature, and, on the other hand, preserves phase separation above the transition temperature. Our experimental observations support the ideas put forward in our previous simulation study: In particular, the picket fence effect on phase separation may explain why micrometer-scale membrane domains are observed in isolated, cytoskeleton-free giant plasma membrane vesicles, but not in intact cell membranes. The experimentally observed suppression of large-scale phase separation much below the transition temperatures also serves as an argument in favor of the cryoprotective role of the cytoskeleton.
引用
收藏
页码:1104 / 1113
页数:10
相关论文
共 50 条
  • [31] Amphiphilic gold nanoparticles perturb phase separation in multidomain lipid membranes
    Canepa, Ester
    Salassi, Sebastian
    de Marco, Anna Lucia
    Lambruschini, Chiara
    Odino, Davide
    Bochicchio, Davide
    Canepa, Fabio
    Canale, Claudio
    Dante, Silvia
    Brescia, Rosaria
    Stellacci, Francesco
    Rossi, Giulia
    Relini, Annalisa
    NANOSCALE, 2020, 12 (38) : 19746 - 19759
  • [32] Thermal Stability of Phase-Separated Domains in Multicomponent Lipid Membranes with Local Anesthetics
    Sugahara, Ko
    Shimokawa, Naofumi
    Takagi, Masahiro
    MEMBRANES, 2017, 7 (03)
  • [33] Adhesion-induced lateral phase separation of multicomponent membranes: The effect of repellers and confinement
    Asfaw, Mesfin
    Chen, Hsuan-Yi
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [34] INTERACTIONS OF DIFFERENT LIPID SPECIES IN MULTICOMPONENT MEMBRANES
    GARDAM, MA
    SILVIUS, JR
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1990, 18 (05) : 831 - 835
  • [35] CALCIUM-INDUCED PHASE-SEPARATION PHENOMENA IN MULTICOMPONENT UNSATURATED LIPID MIXTURES
    TILCOCK, CPS
    CULLIS, PR
    GRUNER, SM
    BIOCHEMISTRY, 1988, 27 (05) : 1415 - 1420
  • [36] Changes in structural state of the lipid phase and cytoskeletal proteins of cellular membranes under the action of hybrid antioxidants
    Fatkullina, Liudmila
    Vekshina, Olga
    Goloshchapov, Alexander
    Burlakova, Elena
    Kim, Yuri
    CHEMISTRY AND PHYSICS OF LIPIDS, 2007, 149 : S26 - S27
  • [37] A lipid bound actin meshwork organizes liquid phase separation in model membranes
    Honigmann, Alf
    Sadeghi, Sina
    Keller, Jan
    Hell, Stefan W.
    Eggeling, Christian
    Vink, Richard
    ELIFE, 2014, 3
  • [38] The Role of Growth Temperature and Lipid Composition in Phase Separation of Yeast Vacuole Membranes
    Leveille, Chantelle
    Cornell, Caitlin E.
    Merz, Alexey J.
    Keller, Sarah L.
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 38A - 38A
  • [39] Lipid Domain Formation and Dynamics in Multicomponent Membranes: Experimental Validation of a Phase-Field Model
    Wang, Yifei
    Zhiliakov, Alexander
    Quaini, Annalisa
    Olshanskii, Maxim
    Majd, Sheereen
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 225A - 225A
  • [40] The Role of Growth Temperature and Lipid Composition in Phase Separation of Yeast Vacuole Membranes
    Leveille, Chantelle L.
    Cornell, Caitlin E.
    Merz, Alexey J.
    Keller, Sarah L.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 228A - 228A