Influence of Si on strain-induced martensitic transformation in metastable austenitic stainless steel

被引:12
作者
Li, Yaji [1 ]
Li, Jun [1 ,3 ]
Ma, Jinyao [2 ,3 ]
Han, Peide [1 ]
机构
[1] Taiyuan Univ Technol, Coll Mat Sci & Engn, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Instrumental Anal Ctr, Taiyuan 030024, Peoples R China
[3] Taiyuan Iron & Steel Grp Co Ltd, Technol Ctr, Taiyuan 030003, Peoples R China
基金
中国国家自然科学基金;
关键词
Metastable austenitic stainless steel; Martensite; Microstructure; Silicon; STACKING-FAULT ENERGY; MECHANICAL-PROPERTIES; PHASE-TRANSFORMATION; MICROSTRUCTURE EVOLUTION; DEFORMATION-BEHAVIOR; HARDENING BEHAVIOR; GRAIN-STRUCTURE; KINETICS; FATIGUE;
D O I
10.1016/j.mtcomm.2022.103577
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of silicon on the strain-induced martensitic transformation of metastable austenitic stainless steel (MASS) during cold rolling were studied. At 10% strain, martensitic nucleation was faster in samples with high silicon concentrations compared to samples with low silicon concentrations. At 20% strain, more martensite formed, and the martensite was more uniformly distributed throughout the sample with the high silicon content compared to the sample with the low silicon content. In addition, the strain hardening rate was higher in the high silicon content sample because the added silicon reduced the stacking fault energy (SFE) in MASS, promoted martensitic formation at low strains, and thereby increased the strain hardening rate in the MASS. As the strain was increased to 30%, a large amount of martensite formed in both samples, but the distribution of the martensite phase in the high silicon content sample was more uniform than in the low silicon content sample because the higher silicon content promoted martensitic nucleation at lower strains. This result is conducive to the rolling of ultra-thin strip stainless steel.
引用
收藏
页数:9
相关论文
共 44 条
[1]   Severe plastic deformation (SPD) processes for metals [J].
Azushima, A. ;
Kopp, R. ;
Korhonen, A. ;
Yang, D. Y. ;
Micari, F. ;
Lahoti, G. D. ;
Groche, P. ;
Yanagimoto, J. ;
Tsuji, N. ;
Rosochowski, A. ;
Yanagida, A. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (02) :716-735
[2]   An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications [J].
Bagherpour, E. ;
Pardis, N. ;
Reihanian, M. ;
Ebrahimi, R. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 100 (5-8) :1647-1694
[3]   Substructures and internal stresses developed under warm severe deformation of austenitic stainless steel [J].
Belyakov, A ;
Sakai, T ;
Miura, H ;
Kaibyshev, R .
SCRIPTA MATERIALIA, 2000, 42 (04) :319-325
[4]   Effects of Si on Microstructural Evolution and Mechanical Properties of Hot-rolled Ferrite and Bainite Dual-phase Steels [J].
Cai, Ming-hui ;
Ding, Hue ;
Lee, Young-kook ;
Tang, Zheng-you ;
Zhang, Jian-su .
ISIJ INTERNATIONAL, 2011, 51 (03) :476-481
[5]   Mechanisms of ultrafine-grained austenite formation under different isochronal conditions in a cold-rolled metastable stainless steel [J].
Celada-Casero, C. ;
Huang, B. M. ;
Aranda, M. M. ;
Yang, J. -R. ;
San Martin, D. .
MATERIALS CHARACTERIZATION, 2016, 118 :129-141
[6]   Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding [J].
Costa, ALM ;
Reis, ACC ;
Kestens, L ;
Andrade, MS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 406 (1-2) :279-285
[7]   Stacking fault energy of cryogenic austenitic steels [J].
Dai, QX ;
Wang, AD ;
Cheng, XN ;
Luo, XM .
CHINESE PHYSICS, 2002, 11 (06) :596-600
[8]   In situ observation of strain and phase transformation in plastically deformed 301 austenitic stainless steel [J].
Das, Yadunandan B. ;
Forsey, Alexander N. ;
Simm, Thomas H. ;
Perkins, Karen M. ;
Fitzpatrick, Michael E. ;
Gungor, Salih ;
Moat, Richard J. .
MATERIALS & DESIGN, 2016, 112 :107-116
[9]   A low-temperature study to examine the role of ε-martensite during strain-induced transformations in metastable austenitic stainless steels [J].
Datta, K. ;
Delhez, R. ;
Bronsveld, P. M. ;
Beyer, J. ;
Geijselaers, H. J. M. ;
Post, J. .
ACTA MATERIALIA, 2009, 57 (11) :3321-3326
[10]   Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel [J].
De, Amar K. ;
Speer, John G. ;
Matlock, David K. ;
Murdock, David C. ;
Mataya, Martin C. ;
Comstock, Robert J., Jr. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (06) :1875-1886