Integrable top equations associated with projective geometry over Z2

被引:4
作者
Fairlie, DB [1 ]
Ueno, T
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Osaka Univ, Grad Sch Sci, Dept Phys, Osaka 5600043, Japan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 38期
关键词
D O I
10.1088/0305-4470/31/38/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a series of integrable top equations associated with the projective geometry over Z(2) as a (2(n) - 1)-dimensional generalization of the three-dimensional Euler top equations. The general solution of the (2(n) - I)-dimensional top is shown to be given by an integration over a Riemann surface with genus (2(n-1) - 1)(2).
引用
收藏
页码:7785 / 7790
页数:6
相关论文
共 6 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   1ST-ORDER EQUATIONS FOR GAUGE-FIELDS IN SPACES OF DIMENSION GREATER THAN 4 [J].
CORRIGAN, E ;
DEVCHAND, C ;
FAIRLIE, DB ;
NUYTS, J .
NUCLEAR PHYSICS B, 1983, 214 (03) :452-464
[3]   AN ELEGANT INTEGRABLE SYSTEM [J].
FAIRLIE, DB .
PHYSICS LETTERS A, 1987, 119 (09) :438-440
[4]   Higher-dimensional generalisations of the Euler top equations [J].
Fairlie, DB ;
Ueno, T .
PHYSICS LETTERS A, 1998, 240 (03) :132-136
[5]  
UENO T, 1998, IN PRESS PHYS LETT A
[6]   COMPLETELY SOLVABLE GAUGE-FIELD EQUATIONS IN DIMENSION GREATER THAN 4 [J].
WARD, RS .
NUCLEAR PHYSICS B, 1984, 236 (02) :381-396