Mathematical Model of Multiphase Nonisothermal Filtration in Deformable Porous Media with a Simultaneous Chemical Reaction

被引:5
|
作者
Khramchenkov, E. M. [1 ]
Khramchenkov, M. G. [2 ]
机构
[1] Kazan Fed Univ, 18 Kremlevskaya Str, Kazan 420008, Russia
[2] Russian Acad Sci, Kazan Branch, RAN Interdept Ctr Supercomp, Branch Fed State Inst,Fed Sci Ctr,Res Inst Syst S, 2-31 Lobachevskii Str, Kazan 420111, Russia
基金
俄罗斯科学基金会;
关键词
multiphase nonisothermal filtration; deformable porous media; heavy crude; TRANSPORT; FLOW; GAS;
D O I
10.1007/s10891-020-02108-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
The authors have developed a mathematical model of multiphase nonisothermal filtration with chemical reactions and phase transitions in deformable porous media. A modified Biot approach was used to describe filtration through a deformable porous medium. Equations for the stress-strain state have been formulated in terms of displacements, and the elastic rheology of a porous skeleton in nonisothermal form was used in the model. The dependence of the permeability on porosity has been written in the form of a Kozeny-Carman equation. A test problem of combustion in a low-permeability sample of a bituminous reservoir has been solved. Results of the work can be used to numerically substantiate experiments on the technology of interbedding combustion in low-permeability beds.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 50 条
  • [1] Mathematical Model of Multiphase Nonisothermal Filtration in Deformable Porous Media with a Simultaneous Chemical Reaction
    É. M. Khramchenkov
    M. G. Khramchenkov
    Journal of Engineering Physics and Thermophysics, 2020, 93 : 191 - 200
  • [2] MATHEMATICAL MODELING OF MULTIPHASE FILTRATION IN POROUS MEDIA WITH A CHEMICALLY ACTIVE SKELETON
    Khramchenkov, M. G.
    Khramchenkov, E. M.
    JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2018, 91 (01) : 212 - 219
  • [3] Mathematical Model of Nonisothermal Multiphase Binary Mixture Flow through a Porous Medium
    Afanasyev, A. A.
    FLUID DYNAMICS, 2011, 46 (01) : 80 - 89
  • [4] Mathematical model of nonisothermal multiphase binary mixture flow through a porous medium
    A. A. Afanasyev
    Fluid Dynamics, 2011, 46 : 80 - 89
  • [5] Formulation of a phase field model of multiphase flow in deformable porous media
    Sciarra, Giulio
    3RD EUROPEAN CONFERENCE ON UNSATURATED SOILS - E-UNSAT 2016, 2016, 9
  • [6] Modeling the multiphase flows in deformable porous media
    Perepechko, Lyudmila
    Romenski, Evgeniy
    Reshetova, Galina
    Kireev, Sergey
    Perepechko, Yury
    XXXIII SIBERIAN THERMOPHYSICAL SEMINAR (STS-33), 2017, 115
  • [7] Multiphase flows in porous media - Mathematical model and microgravity experiments
    Smirnov, NN
    Dushin, VR
    Legros, JC
    Istasse, E
    Boseret, N
    Mincke, JC
    Goodman, S
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 1996, 9 (04) : 222 - 231
  • [8] Multiphase flows in porous media - mathematical model and microgravity experiments
    Smirnov, N.N.
    Dushin, V.R.
    Legros, J.C.
    Istasse, E.
    Boseret, N.
    Mincke, J.C.
    Goodman, S.
    1996, Carl Hanser Verlag, Munich, Germany (09)
  • [9] Nonisothermal absorption with simultaneous chemical reaction
    Pohorecki, R
    Molga, E
    Moniuk, W
    INZYNIERIA CHEMICZNA I PROCESOWA, 2004, 25 (03): : 1533 - 1538
  • [10] HYDRODYNAMICS OF MULTIPHASE FILTRATION IN POROUS-MEDIA
    KHAVKIN, AY
    NEFTYANOE KHOZYAISTVO, 1991, (05): : 23 - 27